
A Toolbox for Realtime Timeseries Anomaly
Detection

Markus Böbel
TU Munich and DXC Technology

Munich, Germany
markus.boebel@tum.de

Ilias Gerostathopoulos
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
i.g.gerostathopoulos@vu.nl

Tomas Bures
Charles University in Prague

Prague, Czech Republic
bures@d3s.mff.cuni.cz

Abstract—Software architecture practice relies more and more
on data-driven decision-making. Data-driven decisions are taken
either by humans or by software agents via analyzing streams
of timeseries data coming from different running systems. Since
the quality of sensed data influences the analysis and subsequent
decision-making, detecting data anomalies is an important and
necessary part of any data analysis and data intelligence pipeline
(such as those typically found in smart and self-adaptive systems).
Although a number of data science libraries exist for timeseries
anomaly detection, it is both time consuming and hard to plug
realtime anomaly detection functionality in existing pipelines. The
problem lies with the boilerplate code that needs to be provided
for common tasks such as data ingestion, data transformation
and preprocessing, invoking of model re-training when needed,
and persisting of identified anomalies so that they can be acted
upon or further analysed. In response, we created a toolbox for
realtime anomaly detection that automates the above common
tasks and modularizes the anomaly detection process in a number
of clearly defined components. This serves as a plug-in solution
for architecting and development of smart systems that have
to adapt their behavior at runtime. In this paper, we describe
the microservice architecture used by our toolbox and explain
how to deploy it for obtaining an out-of-the-box solution for
realtime anomaly detection out of ready-to-use components. We
also provide an initial assessment of its performance.

Index Terms—data-driven decisions, anomaly detection, tool-
box, timeseries

I. INTRODUCTION

Software architecture practice relies more and more on data
for decision making: product managers, system administrators,
and the systems themselves make decisions based on data they
collect and process. Consider, for example, the continuous
monitoring of CPU and memory of the servers used by an
application to identify over- or under-utilizations and reacting
by starting new servers or stopping running ones. A problem
with data-driven decisions is that they can be influenced by the
quality of measured data and in particular by data anomalies.
Indeed, real-life data are often noisy, incomplete, and contain
wrong or invalid values. Neglecting to detect and filter out such
data anomalies can severely bias the outcome of data-driven
decisions. This has been documented in decision-making via
online experimentation, where data quality assurance is a top
priority [1].

There is therefore a clear need to consider anomaly detec-
tion as an integral part of any analysis pipeline for timeseries
data coming from running systems. Such an anomaly detec-

tion component should accurately and timely identify both
simple anomalies, such as invalid or out-of-bounds values,
and contextual ones, e.g. unusual or unexpected peaks or
drops in timeseries. To do so, one could employ one of the
existing libraries for timeseries anomaly detection available in
R (e.g. tsoutliers [2] or Twitter’s library [3]), Java (e.g. Yahoo’s
EGADS [4]), Python, or Matlab—see [5] for a collection of
more than 10 actively maintained anomaly detection software
packages. Still, one would need to provide the boilerplate
code for injecting the data into the anomaly detection system,
transforming the data in the format expected by each library,
and filling in missing values (since some anomaly detection
methods that rely on timeseries prediction do not work with
gaps in the timeseries). Finally, once an anomaly is detected,
it would need to be saved to a persistent store for follow-up
analysis and the timeseries would need to be forwarded to
next steps of the analysis pipeline, potentially after an on-the-
fly replacement or filtering of the anomaly.

To automate some of the above steps and allow for smoother
integration of anomaly detection in data monitoring and
analysis, anomaly detection platforms have emerged. Sky-
line is a prominent example built on top of Graphite, an
enterprise-ready monitoring tool. Other examples are Red
Hat’s Prometheus Anomaly Detection (PAD) built on top
of Prometheus, another enterprise-ready monitoring tool, and
Elastic’s Anomaly Detection module built on top of Elastic-
search and Kibana. Although they are mostly based on open-
source software components, such platforms are either not free
(Elastic) or depend on specific technologies (Skyline and PAD)
for monitoring and storage. An additional challenge is that
such platforms can be difficult to both set up and extend with
new anomaly detection methods.

In response, we created a toolbox for timeseries anomaly
detection that can act as a platform that automates data in-
jection, transformation, and other preprocessing steps without
depending on a particular monitoring tool and modularizes
the anomaly detection process in a number of clearly defined
components. Its modular design makes the platform easy to
configure for analyzing different kinds of timeseries and to
extend with new anomaly detection methods. Our toolbox is
tailored for realtime detection in the order of hundreds of
milliseconds and allows for both online training and re-training
of machine learning models.



In this paper, we describe the microservice architecture of
our toolbox and explain how to deploy it for obtaining an
out-of-the-box solution for realtime anomaly detection out of
ready-to-use components. For detecting anomalies, our toolbox
currently relies on three different methods: a method based
on Exponential Weighted Moving Average, a method based
on Convolutional Neural Networks and a method based on
seasonality detection. We also briefly describe our experience
with using the toolbox, and provide an initial assessment of
its performance.

II. ANOMALY DETECTION ON TIMESERIES

Anomaly detection in timeseries data is not a new topic.
Over the years, a number of approaches for timeseries anomaly
detection have been proposed, ranging from simple threshold-
based approaches to involved ones that learn a model of the
normal behavior based on past data, predict the next value,
and compare the prediction to the actual value to flag the
value as anomalous if it is too far from the prediction. Such
prediction-based approaches rely on different techniques for
timeseries analysis and forecasting, such as simple exponential
smoothing, Holt-Winters, Auto Regressive Integrated Moving
Average (ARIMA), Long-Short Term Memory (LSTM), and
Convolutional Neural Networks (CNN) [6]. Our toolbox can
accommodate different anomaly detection approaches. We
describe here the three approaches (the first two are prediction-
based) that are shipped together with the toolbox and can be
readily used. We chose to implement the specific approaches
since they are quite different to each other and showcase that
our toolbox can accommodate a range of approaches.

a) Predictions via Exponential Weighted Moving Average
(EWMN): Having observed the values of d consecutive points
in a timeseries at time t, a simple way to predict the value
of the next point is to calculate the Exponentially Weighted
Moving Average (EWMAt), also known as Exponential
Moving Average, of the d points and assume that the value
of the point at time t + 1 is equal to EWMAt. This way,
the noise around a value that captures the normal behavior
can be removed. While the simple moving average calculates
the mean of all values within a period, EWMA weights
recently seen values higher than old ones. In particular, the
weight factors decrease exponentially. This is achieved with
the formula EWMAt = Vt ∗a+EWMAt−1 ∗ (1−a), where
Vt is the value of the point at time t, and a is a smoothing
factor with values in [0,1] that controls the impact older events
have in the calculation (with higher values discarding older
events faster). By default, a in our toolbox is set to 2

1+d ,
where d is the number of past points considered, and EWMA
is initialized by setting EWMA1 = V1. Applying EWMA is
technically equivalent to learning an ARIMA (0,1,1)-without-
constant model or performing simple exponential smoothing.
A limitation of using EWMA for timeseries forecasting is
that it cannot deal well with timeseries containing trends and
seasonality. In such cases, higher-order exponential smoothing
approaches (double exponential smoothing, Holt-Winters) can
be used. Advantages of EWMA are its simplicity and its

minimal memory requirements: its calculation only needs the
previous value (EWMAt−1) to be kept.

b) Predictions via Convolutional Neural Networks
(CNN): Instead of performing timeseries forecasting using
techniques from the exponential smoothing family, which are
specific to timeseries data, a number of learning approaches
based on neural networks have been proposed [7]. Both
recurrent neural networks (RNNs), and their specialization
in LSTMs, and CNNs can be used for capturing the evo-
lution patterns in timeseries, with the latter showing better
performance [8]. CNN is a type of neural network, originally
proposed for image analysis and object recognition, that con-
sists of several layers that include convolution layers, pooling
layers, and fully connected layers. While convolutional layers
extract features from the data by moving convolution filters
in a predefined window, pooling layers take the results of the
one or more convolutional layers as input and extract the most
important features. The idea of applying CNNs for timeseries
prediction is to learn filters capturing repeating patterns in the
timeseries (treated as one-dimensional image) and use them to
predict future values. An advantage of CNNs over recurrent-
type networks is that they are more efficient to train [8].
Still, their training requires a large amount of timeseries data.
Compared to EWMA, CNN-based prediction has two distinct
phases: training, where data is collected and a CNN is built,
and operation, where the CNN model is used to make a
prediction given a sequence of n points. To keep the model
performant, it may need periodic re-training.

c) Tunable Anomaly Detection Framework (TADF): A
recently proposed framework for timeseries anomaly detection
relies on the calculation of anomaly scores and thresholds
with the intent to make the whole process easier to tune and
interpret [9]. The framework focuses on the automated iden-
tification of the most effective seasonal pattern for anomaly
detection and groups points according to that pattern. For
example, in a timeseries with hourly measurements that has a
daily seasonality, points are grouped in 24 groups, one for
each hour of the day. Such groups are built for both the
original timeseries and its differenced version. The framework
assigns each point two scores according to the point’s distance
from the median in each group and selects a threshold for
reporting anomalies via these scores in an interactive manner
that involves expert users. Alternatively, as is also the case
in our implementation, the framework identifies anomalies in
an automated way via calculating the modified z score [10] of
each point in each of the two groups it belongs to (correspond-
ing to the original and the differenced timeseries). If either of
the modified z scores of a point is more than a prescribed
threshold (default is 3.5), then the point is considered an
anomaly [10]. The time-consuming part in this approach is
the identification of the prominent seasonality, the creation
of corresponding groups, and the calculation of the median
and MAD. These steps correspond to the “training” phase of
the approach and have to be periodically performed. On the
contrary, the calculation of modified z scores can be done
online for each new point.



Input Transform Check model validity

Fetch historical data

Transform Preprocess

Train CNN

Calculate EWMA

Predict with CNN

Ensembling

Message Queue
(connected to all

services)

Preprocess

External 
Database No-SQL Database

Platform Service

Compare predicted to
actual value

Output

Create groups, calculate
medians and MADs

Calculate modified z
score

Infrastructure Service Prediction-based Service TADF-specific serviceEWMA-specific service CNN-specific service Platform interfaces Control flow Database interaction

new model needed

valid model exists

Fig. 1. Architecture of the toolbox.

III. TOOLBOX

The requirements of our anomaly detection toolbox are to
(1) automate common tasks such as data ingestion and trans-
formation, (2) allow for different anomaly detection techniques
such as the ones described in Section 2 to be plugged in, and
(3) work as a platform for realtime detection (in the order of
hundreds of milliseconds) of anomalies in data streams.

To meet these requirements, our toolbox has a modular
architecture that consists of a number of Python services
packaged as docker containers (Figure 1). A number of
these services are reused by all anomaly detection techniques
(“Platform Services”). Others can be reused by only a group of
such techniques. For instance, “Prediction-based Services” are
only to be reused by techniques that rely on predictions, i.e.
EWMA and CNN. There are also services that are specific to
an anomaly detection technique, e.g. “Train CNN” is specific
to CNN while “Calculate modified z score” is specific to
TADF. Finally, there are infrastructure services that support the
persistence of data in a NoSQL database (we use MongoDB)
and allow the communication between services via a message
queue (we use RabbitMQ).

Instantiating the toolbox services creates a platform for
anomaly detection. Input to the platform are data streams
obtained either via reading from an external database (we
currently support MongoDB and ElasticSearch) or pulling data
via HTTP calls. Similarly, the output of the platform are data
streams with identified anomalies. When a new data point
enters the platform, it first gets transformed from its JSON
or XML format to a Pandas Dataframe to facilitate future
operations (“Transform” service). Next, the “Check model
validity” service checks whether there is a valid prediction
model for the data stream the point belongs to. This can be
done e.g. by considering the time or events passed since the
last training activity took place. Since a data stream in our
toolbox can be associated with many models, the validity of
all associated models is checked here. If a model is not valid
and needs re-training (because it is outdated or because not
enough observations are yet gathered), the lower part of the
flow in Figure 1 gets activated, i.e. the training phase.

In the training phase, first, historical data are fetched via
an external database. In the current implementation, we rely
on the existence of such a database since we do not save
the raw data in our platform. Once the data are fetched,
they are transformed to the expected form using the same
service template as before (“Transform”) and forwarded to
the “Preprocess” service. This service performs a number of
important tasks common to many anomaly detection methods
such as removing invalid values, padding missing values,
scaling, extracting features from data, and filtering based on
time or content windows. Preprocessing can be configured per
data stream and per model in our toolbox. The next step is
specific to the anomaly detection method at hand. In the CNN-
based approach, a dedicated service invokes the training of
a CNN that includes hyperparameter tuning, while in TADF
a dedicated service is responsible for identifying the most
effective seasonality, creating the corresponding groups, and
calculating the median and MAD per group. The resulting
models are saved in the internal database.

If a valid model is found, the flow continues to the top right
part of Figure 1. Here, the preprocessing service is invoked
and prepares the new data point for the later stages. Since
the same service template is invoked here as in the training
phase, we ensure that new data are preprocessed in the same
way as older data used in model creation. At this point, the
flow splits into two parallel flows. First, if needed, a prediction
service is executed, as in the case of EWMA and CNN. The
“Calculate EWMA” and “Predict with CNN” services retrieve
the corresponding model (which in the case of EWMA is
simply the previous EWMA value) and use it together with
the latest point to predict the value of the next point. The
predictions are saved in the database to be used once the next
point arrives. Second, the services that perform the anomaly
check are invoked. In case of prediction-based methods, our
toolbox provides a reusable service which retrieves the latest
prediction from the database and compares it to the actual
value of the latest point. If the prediction is far from the actual
value (based on a configurable threshold), the point is marked
as an anomaly by the corresponding method. In TADF, which



10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

CN
N

0

5

10

15

20

25

cp
u 

ut
iliz

at
io

n
TA

DF
EW

M
A

Fig. 2. Graphical output showing anomalies identified by CNN, TADF,
EWMA, and at the ensembling phase (top box).

does not rely on predictions, a dedicated service is provided
that assigns the new point to a group, retrieves the metadata of
its group, calculates its modified z score, and marks the point
as an anomaly according to the result. The results from all the
anomaly checking methods are saved in the internal database.

As a last step, a platform service (“Ensembling”) retrieves
the results from the different methods and combines them to
make a final decision about whether a point should be marked
as an anomaly. Although such ensembling logic can be very
complex, in our first attempt we use a simple majority voting
which outputs a point as an anomaly if half or more of the
methods associated with its data stream indicate that it is.

IV. EXPERIMENTS AND LESSONS LEARNED

We have deployed and used the platform at DXC Tech-
nology in identifying anomalies in data streams coming from
performance measurements of application servers, in particu-
lar, CPU and memory utilization, and other OS-level metrics
measured at a 10-minute frequency. At DXC Technology, the
platform is used as part of a smart and adaptive monitoring
system that allows customers to gather, visualize, and analyze
key metrics of their infrastructure.

We have used all three implemented methods to identify
anomalies after configuring them in the following way. The
CNN model was trained with 3 months of data (˜13000 points);
the same amount was used in preparing the groups for TADF.
For EWMA, a window size of 1 day (144 points) and a
smoothing factor of 0.5 was used. In predicting with CNN, we
gave a sequence of the last 12 points to the trained regressor.
In our preliminary experiments, we first inspected that the
ensembling service is indeed providing meaningful results, i.e.
points that can be considered actual anomalies. As a sanity
check, we also plotted the individual anomaly checks side
by side (Figure 2). We then measured the end-to-end latency
of the platform: We logged the time elapsed between the
beginning of the first service (“Transform”) until the end of
the service that performs the anomaly check for each method
(“Compare predicted to actual value” for CNN and EWMA
and “Calculate modified z score” for TADF). The tests were

TADF EWMA CNN Model

0.4

0.6

0.8

1.0

1.2

Du
ra

tio
n 

in
 se

co
nd

s

Fig. 3. End-to-end latency measurements for the three implemented methods.
Each boxplot contains 100 samples.

executed on a Windows 10 with Intel Core i7 2.70 GHz and
32 GB RAM. Our results indicate that all three methods are
able to indicate anomalies in subsecond latencies (Figure 3).

V. CONCLUSION

In this paper, we described a ready-to-use toolbox to effi-
ciently detect anomalies by consolidating different methods.
While at the current state of the tool three methods (EWMA,
CNN and TADF) are provided, more methods can be flexibly
added due to the modular architecture of the platform and the
possibility of efficiently reusing its platform services across
different methods. Our toolbox serves as a plug-in solution
for architecting and development of smart systems that have
to adapt their behavior at runtime.

ACKNOWLEDGEMENT

This work was partially supported by the Czech Science
Foundation project 20-24814J.

REFERENCES

[1] Z. Zhao, M. Chen, D. Matheson, and M. Stone, “Online experimentation
diagnosis and troubleshooting beyond aa validation,” in DSAA 2016.
IEEE, Oct 2016, pp. 498–507.

[2] J. López-de Lacalle, “tsoutliers: Detection of Outliers in Time Series,”
https://CRAN.R-project.org/package=tsoutliers, 2019.

[3] Twitter, Inc and other contributors, “AnomalyDetection R package,”
https://github.com/twitter/AnomalyDetection, 2015.

[4] N. Laptev, S. Amizadeh, and I. Flint, “Generic and Scalable Framework
for Automated Time-series Anomaly Detection,” in KDD’15. ACM,
2015, pp. 1939–1947.

[5] Roberto, “rob-med/awesome-TS-anomaly-detection,” Jan. 2020,
accessed: 2020-01-08. [Online]. Available: https://github.com/rob-
med/awesome-TS-anomaly-detection

[6] A. v. d. Oord, Dieleman et al., “WaveNet: A Generative Model for Raw
Audio,” arXiv:1609.03499 [cs], Sep. 2016.

[7] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and
K. P. Soman, “Stock price prediction using LSTM, RNN and CNN-
sliding window model,” in ICACCI 2017, Sep. 2017, pp. 1643–1647.

[8] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional Time Series
Forecasting with Convolutional Neural Networks,” arXiv:1703.04691
[stat], Sep. 2018.

[9] M. R. Alam, I. Gerostathopoulos, C. Prehofer, A. Attanasi, and T. Bures,
“A framework for tunable anomaly detection,” in ICSA 2019, March
2019, pp. 201–210.

[10] B. Iglewicz and D. C. Hoaglin, How to detect and handle outliers, ser.
ASQC basic references in quality control. Milwaukee, Wis: ASQC
Quality Press, 1993, no. v. 16.


