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Abstract. Smart system applications (SSAs) built on top of cyber-
physical and socio-technical systems are increasingly composed of compo-
nents that can work both autonomously and by cooperating with each
other. Cooperating robots, fleets of cars and fleets of drones, emergency co-
ordination systems are examples of SSAs. One approach to enable coopera-
tion of SSAs is to form dynamic cooperation groups—ensembles—between
components at runtime. Ensembles can be formed based on predefined
rules that determine which components should be part of an ensemble
based on their current state and the state of the environment (e.g., “group
together 3 robots that are closer to the obstacle, their battery is suffi-
cient and they would not be better used in another ensemble”). This
is a computationally hard problem since all components are potential
members of all possible ensembles at runtime. In our experience working
with ensembles in several case studies the past years, using constraint
programming to decide which ensembles should be formed does not scale
for more than a limited number of components and ensembles. Also, the
strict formulation in terms of hard/soft constraints does not easily permit
for runtime self-adaptation via learning. This poses a serious limitation
to the use of ensembles in large-scale and partially uncertain SSAs. To
tackle this problem, in this paper we propose to recast the ensemble
formation problem as a classification problem and use machine learning
to efficiently form ensembles at scale.
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1 Introduction

Smart system applications (SSAs) are cyber-physical and socio-technical systems
that comprise a number of components that cooperate towards a common goal.
These systems are increasingly popular and include wide range of applications
spanning from smart building management (coordinating heat, ventilation, air
conditioning with physical access control, etc.), smart traffic, emergency response
systems, up to smart farming or smart underwater exploration.

The cooperation among components is a key feature of these systems. The
cooperation is typically governed by certain application-specific collaboration



rules. For instance, in the smart farming domain, the drones monitoring the
crop on fields may coordinate to keep three drones in the air patrolling the
surveyed area while the rest of the drones recharges or stays idle on the ground.
This naturally leads to describing the coordination in these systems using a set
of constraints (both hard constraints and soft constraints) that govern which
components should cooperate at a particular point in time and what their
task is. For instance, such constraints would assign the three drones the task
to patrol the fields. The selection would be based on the battery level of the
drone and its distance to the patrolled area. Formally speaking, the correct and
optimal operation of such a system is then reduced to the problem of finding the
assignment of components to collaboration groups that satisfy the constraints
and optimize the soft-optimization rules.

In our work we use the architectural concept of autonomic component ensemble
to model the collaboration group. The ensemble defines its potential members
and stipulates the set of hard constraints and optimization rules that govern
which components are eventually selected as members. As multiple ensembles
can co-exist at the same time, there are naturally also constraints across the
ensembles—for enforcing that the same component may be a member of only one
of several ensembles of the same type. The problem of finding such assignment
of components to ensembles (we term this ensemble resolution) is inherently
exponential and cannot be easily overcome even with state-of-the-art SMT or
CSP solvers.

The problem is even aggravated by the fact that the solution to the problem
has to be found repeatedly—essentially whenever the state of the components
or the environment changes. This is because the constraints controlling the
membership of components in ensembles typically directly depend on the state of
the components and the environment. As this state constantly changes, ensembles
have to be continuously re-resolved at runtime. This puts hard practical limits on
the time needed to complete the ensemble resolution to be in order of seconds (up
to minutes), and consequently on the maximum size of the system (which, based
on our experiments [9], depends on the complexity of ensembles often limited to
a dozen or a few dozens of components). Longer waiting times means that the
system cannot flexibly react to ever changing situations in its environment.

In this position paper, we thus explore an approach to address the problem
of ensemble resolution that does not require exponential time at runtime. In
particular, we show how the problem of ensemble resolution can be recast to a
classification problem. In our work we use both neural networks and decision
trees as classifiers. After training the classifier offline, we can execute it quickly
at runtime, thus significantly cutting down the time needed to resolve ensembles.

As we discuss further in the text, using the classifier conceptually changes the
problem from crisp solutions that strictly follow the hard constraints to fuzzied
solutions that do not necessarily have to strictly obey the hard constraints.

As it turns out, if well designed, such a system with approximate solutions
still works. This requires a bit more robust design that balances well the responsi-
bilities in the system among autonomously operating components (meaning that



the components themselves are responsible for ensuring their safe and reliable
operation) and ensemble-level decisions that deal with high-level coordination
of components. However, such a design is overall necessary to make the system
more robust to uncertainty and to facilitate decentralization.

In this paper we report on our initial experiments in this direction. To
demonstrate and evaluate the idea, we adopt a use-case inspired by our work in
a smart farming project [9]. We use the agent-based simulator of the use-case
scenario to draw indicative results pointing to the feasibility of our approach.

We describe our running example inspired by our work in the smart farming
project [9] in Section 2. Then we explain how to recast the problem of ensemble
formation to a classification problem in Section 3. Section 4 provides an initial
evaluation of the feasibility of our prediction-based ensemble resolution. Finally,
Section 5 positions the work w.r.t related ones, and Section 6 concludes with a
summary and outlook.

2 Running example

As a motivational example, we use an actual scenario taken from our ECSEL
JU project AFarCloud3, which focuses on smart-farming and efficient usage of
cyber-physical and cloud-systems in agriculture. Figure 1 shows a screenshot
from our simulator developed to demonstrate the scenario.

Fig. 1: Example

In the scenario, there is a farm with several fields—the yellow ones represent
fields with crop requiring a protection from birds (which can damage the crop)
while the brown and dark-green ones require no protection. The whole farm is
continuously monitored by a fleet of autonomous drones. The drones perform
environment monitoring (humidity, temperature, etc.) and also detection of flocks
of birds. In case a flock is detected, the drones are used to scare the flock away

3https://www.ecsel.eu/projects/afarcloud
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from the crop fields to the birds-insensitive farm areas. To be effective in scaring,
the drones have to form a group (depending on the size of the flock). Additionally,
the drones can operate for a limited time only (depending on the battery capacity)
and need to periodically recharge in the charger (the rounded arrow blocks at the
center), but which can charge only a limited number of drones at the same time.
Thus in order to be effective as a whole, the system has to balance between the
number of drones monitoring the farm, scaring the birds, and charging themselves.
Plus, the system needs to select the most suitable drones for individual tasks (i.e.
the closest ones, with a sufficient amount of energy, etc. depending on the task).

To model and run dynamic and autonomous systems (like this one), we use our
approach based on autonomic ensembles [13]. In this approach, entities of a system
are modeled as components and cooperation among the components is modeled
via ensembles, which are dynamic context-dependent (time and space bound)
groups of components. For simple and easy development and experimentation
with ensembles, we have created a Scala-based internal domain-specific language
(DSL) to specify components and ensembles.

Listing 1.1 shows an excerpt of the specification of the example in DSL. Both
the component and ensemble types are modeled as classes, while the actual
component and ensemble instances are instantiations of these classes (there can
be a number of instances of a particular type). In the example, there are four
component types—DroneComponent, FieldComponent, ChargerComponent and
FlockComponent (lines 1–23). A component state (called component knowledge)
is modeled via the class fields. The FieldComponent and FlockComponent are
non-controllable components, i.e., they cannot be directly controlled by the
system and their state is observed only.

«Ensemble»
ChargerAssignment

«Ensemble»
SegmentAssignment

«Ensemble»
PatrolUnknown

«Ensemble»
ScareFormation

«Ensemble»
ApproachFieldUnderThreat

«Ensemble»
DroneProtectionSystem

Fig. 2: Ensembles hierarchy in the running example.

There are six ensemble types—the top level one and five nested ones (the
structure is shown in Figure 2). An ensemble is formed dynamically in order to
execute a group-level behavior (e.g., scare the flock). Only the top-level ensemble
instance (called the root ensemble) exists for the whole lifetime of the system (it
is instantiated at line 97). The component instances grouped in the ensemble are
not defined statically but via its membership condition, which is a conjunction
of predicates over the component instances and their knowledge and which
is continuously evaluated. For instance, in the DroneProtectionSystem ensemble,



the lines 30–33 of Listing 1.1 identify component instances in the system and
categorize them by mode. These groups of components are then used in ensembles
to declare potential members. The declaration of potential members is done via
oneOf (e.g. line 65) and subsetOfComponents (e.g. line 41). These two declarations
differ only in cardinality constraints.

A particular component instance can be a member of several ensemble in-
stances at the same time. If additional conditions have to be hold, the constraint
construct can be used (e.g., at line 91 in the DroneProtectionSystem). The utility
construct (e.g., at line 85 in the DroneProtectionSystem) represents a soft condition,
which is an optimization function for forming ensembles (i.e., in the case, there
are several possibilities to choose component instances for the ensemble). Finally,
the tasks construct assigns responsibilities to component instances which are
members of a particular ensemble instance.

As already mentioned, ensembles can be nested; members (i.e. component
instances) of an ensemble are also members of a parent ensemble. The meaning
of nesting is that the root ensemble (the one without any parent) defines the
overall goal of the system while the nested ones represent particular sub-goals.
The DroneProtectionSystem ensemble is the root and represents the whole system.
The ApproachFieldUnderThreat ensemble is used to direct the necessary number of
drones to the field with detected birds. When the necessary number of drones is
above the field, an instance of the ScareFormation ensemble replaces the instance
of the previous ensemble and tries to scare birds away from the field by moving
drones above the field in a formation that equally spreads the drones over the
field. To simplify definition of assignment of the drones to positions over the
affected field, the ensemble contains the sub-ensembles SegmentAssignment. The
PatrolUnknown ensemble is used to guide a drone to a field that has unknown
status (no information about birds). And finally, the ChargerAssignment ensemble
is instantiated per charger place and assigns a drone that has a low energy level
to the charger.

The sub-ensembles are declared using ensembles (e.g. line 80) and rules (e.g.
line 70). The former declares a potential ensemble instance (i.e. such that will
be instantiated if constraints allow it), the latter declares a mandatory ensem-
ble instance (i.e. such that has to exist if its parent ensemble instance gets
instantiated).

1 case class DroneComponent(
2 id: String, mode: DroneMode.DroneMode, position: Position, energy: Double,
3 chargingInChargerId: Option[ChargerId], observedFields: Map[String, FieldObservation]
4 ) extends Component {
5 name(id)
6 }
7
8 case class FieldComponent(idx: Int, flocks: Map[String, FlockState]) extends Component {
9 name(s"Field ${idx}")

10 val center = FieldIdHelper.center(idx), val area = FieldIdHelper.area(idx)
11 val isUnknown = false, val isUnderThreat = flocks.values.exists(flock => area.contains(flock.position))
12 val requiredDroneCountForProtection = FieldIdHelper.protectingDroneCountRequired(idx)
13 val protectionCenters = FieldIdHelper.centers(idx, requiredDroneCountForProtection)
14 }
15
16 case class ChargerComponent(idx: Int, isFree: Boolean) extends Component {
17 name(s"Charger ${idx}")



18 val chargerId = ChargerId(idx), val position = chargerId.position
19 }
20
21 case class FlockComponent(position: Position) extends Component {
22 name(s"Flock @ ${position}")
23 }
24
25 class Scenario(simulationState: SimulationState) extends /∗....∗/ {
26
27 class DroneProtectionSystem extends Ensemble {
28 name(s"Root ensemble of the protection system")
29
30 val operationalDrones = allDrones.filter(drone => drone.mode != DroneMode.DEAD &&

drone.mode != DroneMode.CHARGING && drone.energy > Drone.chargingThreshold)
31 val dronesInNeedOfCharging = allDrones.filter(drone => drone.mode != DroneMode.DEAD &&

drone.mode != DroneMode.CHARGING && drone.energy < Drone.chargingThreshold)
32 val fieldsWithUnknownStatus = allFields.filter(_.isUnknown)
33 val fieldsUnderThreat=allFields.filter(_.isUnderThreat), val freeChargers=allChargers.filter(_.isFree)
34
35 class ApproachFieldUnderThreat(val field: FieldComponent) extends Ensemble {
36 name(s"ApproachFieldUnderThreat ensemble for field ${field.idx}")
37
38 val flocksInField = allFlocks.filter(x => field.area.contains(x.position))
39 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
40 val droneCount = field.requiredDroneCountForProtection, val center = field.center
41 val drones = subsetOfComponents(operationalDrones, _ <= droneCount)
42
43 utility {drones.sum(x=>if (field.area.contains(x.position)) 10 else dist2Utility(x.position, center))}
44
45 tasks {
46 if (flocksInField.isEmpty) {
47 for (drone <− drones.selectedMembers) moveTask(drone, center)
48 } else {
49 val selectedDronesInFieldCount = drones.selectedMembers.count(x =>

field.area.contains(x.position))
50 /∗ ... ∗/
51 }
52 }
53 }
54
55 class ScareFormation(val field: FieldComponent) extends Ensemble {
56 name(s"ScareFormation ensemble for field ${field.idx}")
57
58 val dronesInField = operationalDrones.filter(x => field.area.contains(x.position))
59 val droneCount = field.requiredDroneCountForProtection
60 val segmentCenters = field.protectionCenters
61
62 class SegmentAssignment(val segmentCenter: Position) extends Ensemble {
63 name(s"Assignment for field ${field.idx} @ ${segmentCenter.x},${segmentCenter.y}")
64
65 val drone = oneOf(operationalDrones)
66
67 utility { drone.sum(x => dist2Utility(x.position, segmentCenter)) }
68 tasks { moveTask(drone, segmentCenter) }
69 }
70 val protectionSegmentAssignments = rules(segmentCenters.map(new SegmentAssignment(_)))
71
72 utility { protectionSegmentAssignments.sum(assignment => assignment.utility) / droneCount }
73 constraint( protectionSegmentAssignments.map(_.drone).allDisjoint )
74 }
75
76 class PatrolUnknown(val field: FieldComponent) extends Ensemble { /∗ ... ∗/ }
77
78 class ChargerAssignment(charger: ChargerComponent) extends Ensemble { /∗ ... ∗/ }
79
80 val patrolUnknown = ensembles(fieldsWithUnknownStatus.map(new PatrolUnknown(_)))
81 val chargerAssignments = ensembles(freeChargers.map(new ChargerAssignment(_)))
82 val approachFieldsUnderThreat =

ensembles(fieldsUnderThreat.filter(ApproachFieldUnderThreat.isInSituation(_)).map(new
ApproachFieldUnderThreat(_)))



83 val scareFormations = ensembles(fieldsUnderThreat.filter(ScareFormation.isInSituation(_)).map(new
ScareFormation(_)))

84
85 utility {
86 approachFieldsUnderThreat.sum(assignment => assignment.utility) +
87 scareFormations.sum(assignment => assignment.utility) +
88 patrolUnknown.sum(assignment => assignment.utility) / 4 +
89 chargerAssignments.sum(assignment => assignment.utility)
90 }
91 constraint(
92 (patrolUnknown.map(_.drone) ++ approachFieldsUnderThreat.map(_.drones) ++

scareFormations.map(_.drones)).allDisjoint &&
93 chargerAssignments.map(_.drone).allDisjoint
94 )
95 }
96
97 val root = EnsembleSystem(new DroneProtectionSystem)
98 }

Listing 1.1: Running example in DSL

The more complete version of the example is available in [9] together with
details of the ensemble definition and DSL definition. The complete code of the
example is available at https://github.com/smartarch/afcens.

3 Methods

3.1 As a Constraint Satisfaction Problem

Our existing approach to instantiating ensembles (described, e.g., in [13]) is to
cast it as a constraint satisfaction (CSP) and optimization problem. That is,
how to assign given component instances to ensemble instances such that the
cardinality restrictions (e.g., line 65 or line 41 in Listing 1.1) and constraint
blocks in ensembles (e.g., line 91) are satisfied and such that the utility function
of the root ensemble instance is maximized.

The ensemble specification (Listing 1.1) describes all potential ensemble
instances and for each potential ensemble instance, it defines its potential member
component instances. However, not all of these potential ensemble instances are
eventually created. Only those are created that together satisfy the constraints
while maximizing the utility function. Technically, existence of each potential
ensemble instance is represented in the constraint optimization problem by a
Boolean variable. Similarly, membership of a component instance in a particular
ensemble instance is again represented by a Boolean variable. Constraints are
formed to reflect the structural constraints between ensemble component instances
(such as those that existence of a sub-ensemble instance implies existence of the
parent ensemble instance) and the constraints expressed in the specification. The
result of the constraint optimization is the assignment of Boolean variables that
indicate which ensemble instances are to be created and which components are
their members. We perform the constraint optimization using an existing CSP
solver (in particular Choco Solver 4).

4https://choco-solver.org/
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An obvious problem with this approach is that the constraint optimization
has by its nature exponential complexity. We performed several test on various
scenarios and all indicate that while the approach works well and has clear
and crisp semantics, it does not scale beyond a dozen or several dozens of
component instances (depending on the complexity of the specification). Beyond
such limit, the CSP solver requires minutes or even hours to run, which makes
it impractical for forming ensembles at runtime as this requires periodic re-
evaluation of ensembles (for instance every couple of seconds or minutes). As
such, we explore further in this section an alternative way to decide on which
ensembles to instantiate by re-casting the ensemble forming as a classification
problem. Though the training phase of the classifier takes long, the actual
execution of the classifier is almost instantaneous—thus very suitable for constant
re-evaluation of the situation at runtime.

3.2 As a Classification Problem

When casting the ensemble resolution as a classification problem, we take the
inputs and outputs of the CSP solver as a starting point and, instead of invoking
a CSP solver to determine the assignment of component instances to ensemble
instances, we train classifiers to predict such assignment given the same inputs
as the CSP solver. Our approach is application of supervised learning where each
classifier is trained on a number of examples of inputs and outputs provided by
the historical invocations of the CSP solver.

The inputs of the classification problem are identical to the CSP problem
inputs and comprise the component knowledge (Listing 1.1) that influences in any
way the ensemble resolution process, i.e. is considered in the constraints expressed
in the specification. In our running example, the knowledge fields included are
the ones presented in Table 1.

Component Field Domain Example

Charger occupied Boolean True

Drone

energy float 0.82
x float 113.125
y float 53.375

mode enum CHARGING

Flock
x float 157.875
y float 66.187

Table 1: Inputs of classification problem.

The outputs of the CPS problem are the Boolean variables that represent
membership of a component instance to an ensemble instance. For the classifica-
tion problem, we use as outputs nominal variables that represent the membership
of component instances to ensembles.

Since there are several outputs and the outputs follow a nominal scale, the
overall classification problem we need to solve to assign component instances to



ensemble instances in our setting is a multi-output, multi-class problem. Such
problems can be solved by training either one multi-output, multi-class classifier
(which simultaneously predicts all outputs) or several independent single-output,
multi-class classifiers (one for each output). In our experiments, we used both
single-output and multi-output classifiers and different learning methods, namely
decision trees and neural networks, overviewed next.

Decision Trees (DT) represent a supervised learning method that can be used
both for classification and regression. Its operation is based on creating a tree
structure where leaves represent class labels (in case of classification) or continuous
values (in regression) and branches represent decision rules inferred from the
values of the inputs that lead to the leaves. In the case of multi-output problems,
leaves represent a set of class labels, one for each output. A DT is iteratively
constructed by an algorithm that selects, at each iteration, a value for an input
that splits the output dataset into two subsets and uses a metric to evaluate the
homogeneity of the output within the subsets. In our experiments, we used the
Gini impurity metric [12]. We did not use any pruning or set a maximum depth
to the derived trees. Finally, since we deal with unbalanced data (Fig. 5), we
use class weighting in training, with the inverse of the class distribution in our
training sets. We experimented with two DT variants: the multi-output variant,
in which a single DT was trained to predict the decisions of four drones (we
used this number of drones for all our experiments, see Section 4.1) and the
single-output variant, in which four separate DTs were trained, one for each
drone.

Neural networks (NN). In our experiments, we used fully connected feed-forward
NNs with residual connections that connect layers that are not adjacent. In
between the dense layers and within the first layer we regularize the outputs with
batch normalization [10]. As a optimizer we use LAMB [16]—(stochastic gradient
descent method that is based on Layer-wise adaptive estimation of first-order
and second-order moments) with multiple steps of logarithmic learning decay. We
used a batch size of 50.000 and trained the NNs for 50 epochs. We experimented
with different network architectures—Figure 3 shows the architecture of the best
performing NN (called large NN henceforth), figure 4 a shows less complex, but
only slightly worse performing network, which we term small NN. Both networks
have four outputs corresponding to the decisions of the four drones.

4 Evaluation

In this section, we provide an initial evaluation of the feasibility of our prediction-
based ensemble resolution approach. First, we describe the experimental setup
used for both obtaining historical data and for evaluating the use of the trained
classifiers at runtime. Then, we overview the classification performance of the
different learning methods using different metrics. Finally, we describe the results
obtained when using the trained classifiers, together with the CSP solver, for
ensemble resolution at runtime.
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Fig. 3: Architecture of large NN with emphasized residual connections. Numbers
denote width of the fully connected layers.
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Fig. 4: Architecture of small NN with emphasized residual connections. Numbers
denote width of the fully connected layers.

4.1 Experimental Setup

Our experimental setup consists of a simulation that runs the smart farming
system described in Section 2. In all our experiments, we have used the follow-
ing number of component instances: four drones, five fields, three chargers,
and five flocks. Instead of considering all the component instances and all
the potential ensembles in the evaluation of our prediction-based approach,
in our preliminary experiments we focused on the drone component and the
ApproachFieldUnderThreat ensemble. We created classifiers to predict four
output variables, each corresponding to one drone in the simulation, capturing
whether the drone belongs to the ApproachFieldUnderThreat ensemble formed
for the protection of a particular field. So, each output variable takes one of six
values: “no field”, “field 1”, “field 2”, “field 3”, “field 4”, “field 5”.
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Fig. 5: Distribution of dataset in different classes.

4.2 Evaluation of classification performance

To evaluate the performance of the different classifiers we trained, we used the
metrics of balanced accuracy, precision, recall, and F1-score. These metrics are
computed as follows. We count true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) that characterize whether a class has
been correctly predicted by a classifier. In particular, for each of the six classes
(“no field”, “field 1”, “field 2”, “field 3”, “field 4”, “field 5”) and for each output
variable, TP, TN, FP, and FN numbers are calculated in the following way. Given
a predicted value ypred and a real value yreal and considering a class c:

(a) TPc is increased by one if ypred = c and yreal = c;
(b) TNc is increased by one if ypred ̸= c and yreal ̸= c;
(c) FPc is increased by one if ypred = c and yreal ̸= c;
(d) FNc is increased by one if ypred ̸= c and yreal = c.

Given the above, the following metrics can be defined for a class c: (i) accuracyc =
T Pc+T Nc

T Pc+T Nc+F Pc+F Nc
, capturing the ratio of correct predictions; (ii) precisionc =

T Pc

T Pc+F Pc
, capturing the time a positive prediction was also correct; (iii) recallc =

T Pc

T Pc+F Nc
, capturing the times a positive value was also predicted as such; and

(iv) F1scorec = 2∗precisionc∗recallc

precisionc+recallc
, the harmonic mean of precision and recall.

To give a single indicator of classification performance, the above metrics
can be averaged over the different six classes in our dataset. A popular overall
metric in multi-class classification is the average accuracy calculated by simply
averaging the accuracy from all classes. However, such calculation can lead to
biased estimates of classifier performance when tested on imbalanced datasets.
In our case, we indeed have a imbalanced datasets, since the “no ensemble” class
appears much more often than the other classes (Fig. 5). We have thus opted
for calculating the balanced accuracy by first dividing each class accuracy by the
number of instances of that class and then taking the average [6].

Table 2 depicts the balanced accuracy of the different classifiers we have
trained, averaged over the four outputs. The testing set was always set to 100
million samples. A first observation is that the four separate single-output decision



Training samples (million) 1 10 100

multi-output decision tree 49.11% 62.29% 72.33%
single-output decision trees 70.18% 77.21% 83.01%
small neural network 71.87% 94.02% 97.03%
large neural network 75.55% 95.86% 98.77%

Table 2: Average balanced accuracy of the different classifiers, calculated with
testing set of 100 million samples, for three sizes of training sets.

Precision Recall F1 Score
60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 (%

)

               decision trees                        neural networks
           multi           single                     small         large

100M

10M

1M

Fig. 6: Weighted averages of precisions, recalls, and F1-scores for different classi-
fiers and training set sizes, in million (10M depicts the delta between the result
obtained with 10M and 1M samples and 100M the delta between 100M and 10
M samples).

tree classifiers outperform the multi-output decision tree one (which performed
overall very poorly). Another observation is that the two neural networks outper-
form the decision tree classifiers in all cases, while big improvements are seen
compared to the decision trees when trained with 10 and 100 million samples.
Finally, for all classifiers, there is always an improvement when trained with more
data; however, while for decision trees the improvement is linear (e.g. ∼7% from
one to 10 million and ∼6% from 10 to 100 million for the single-output case),
for the neural networks it is more profound when going from one to 10 million
(∼20-23%) compared to going from 10 to 100 million (∼3%).

We also calculated the weighted average of precision, recall, and F1 score for
each drone. The weighted average is calculated by weighting each class according
to its inverse prevalence (Figure 5). Figure 6 shows the weighted averages of the
three metrics, averaged over the four drones. We observe that the single-output
classifiers perform universally better than the multi-output one; similarly, the
large neural network performs slightly better than the small one across the board.
Also, we see the same pattern as with weighted averages: in neural networks, there
is a large gain when using 10 instead of 1 million data; this gain is much smaller
when using 100 instead of 10 million data. Instead, for decision trees, there is
an almost equal gain when using 10 times more data. Finally, contrary to the
balanced accuracy results, the single-output decision tree classifier outperforms
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Fig. 7: Boxplots of overall utilities (undisturbed time for birds) when plugging
the different predictors in the simulation of our running example.

the other classifiers (including the neural network ones) in all metrics when
trained with 1 million data.

4.3 Experiments using Classifiers for Ensemble Resolution

To evaluate how effective the trained classifiers are when used together with the
CSP solver in ensemble resolution, we plugged them in the simulation of our
running example and evaluated the overall utility of a run, given by the amount
of undisturbed time that birds spend on fields. We compared the following cases:

– Runs where the drones were never participating in the ApproachFieldUnder-
Threat ensemble. This serves as the overall baseline.

– Runs with ensemble resolution every 1 minute of simulation time by invoking
the CSP solver.

– Runs with ensemble resolution every 1 minute of simulation time by means of
invoking a respective predictor to determine the participation of each drone
in ApproachFieldUnderThreat. (As the other ensembles were not handled
by the predictor, we still formed them based on the CSP solver.)

Each run had a duration of 600 minutes of simulated time; we performed
1000 runs (randomizing the starting position of flocks and drones) for each case,
with the results depicted in Fig. 7.

The boxplots show that, for each predictor, using more training data resulted
in higher overall utility. Also, while in most of the cases, using the predictor with
the CSP resulted in a reduction of the system utility w.r.t using only the CSP
solver, all cases performed better than not participating in ensembles at all. Also,
in two cases (nn_small and nn_large trained with 100 million samples) there
was a marginal improvement over the CSP case. We believe this happens due
to the classifier being able to generalize over the solution provided in the form



of hard/soft constraints and was able to improve on corner cases which lead for
instance to short intervals of oscillation when a drone was switching between
two targets and, as the result, did not move. Another interesting observation
is that higher balanced accuracy does not always translates to higher utility in
the simulation: e.g. even though the small_nn on 1 million samples had slightly
higher balanced accuracy than the respective dd_single (Table 2), its overall
utility is slightly lower, as can be seen in Fig. 7.

5 Related work

The original idea of ensembles is based on the SCEL language [11]. In its im-
plementation JRESP5 [11], the ensembles are formed implicitly, as they are
abstractions capturing groups of components and dynamically determined by
their attribute-based communication. Almost the same approach is used in the
AbaCuS [2] (which is not strictly an ensemble-based framework however it is built
on the principles of the attribute-based communication). Another ensemble-based
framework is Helena [8] but here, the ensembles are formed explicitly, i.e., the
components indicate, to which the ensemble they belong. In our implementa-
tion [13] of ensemble-based system, we have used the constraint solver for forming
ensembles but its issues have been already mentioned in Section 3.

The concept of ensembles targets emergent configurations. In the implementa-
tion of the ECo-IoT [1] approach, the emergent configurations are solved using a
state space planner, nevertheless its performance is also hindered by exponential
complexity. The planner is also employed in [7], where the linear complexity is
claimed. However, measurements are done with respect to the growing number
of adaptations in a system (and not the size of the system).

Machine learning has been recently used in different ways to replace heavy
computations that are part of constraint satisfaction and combinatorial optimiza-
tion problems by fast approximations using machine learning, as overviewed in
a recent survey [4]. For example, decision trees have been used in predicting
the satisfiability of SAT instances [15], while deep neural networks have been
used in predicting the satisfiabilities of random Boolean binary CSPs with high
prediction accuracies (>99.99%) [14]. Other approaches have tried to embed
neural networks, but also decision trees and random forests, in constraint pro-
gramming [3,5]. The idea is to learn part of the combinatorial optimization model
and embed the learned piece of knowledge in the combinatorial model itself. We
too train classifiers to overcome computational issues associated with ensemble
resolution, where constraint programming is the host technology.

6 Conclusion

In this paper, we proposed a new approach for formation of ensembles at runtime.
Instead of relying on a constraint solver to decide on optimal placement of

5http://jresp.sourceforge.net/

http://jresp.sourceforge.net/


components to ensembles, we employed machine learning. This allows us to
tackle the problem of exponential time needed by the constraint solver, which is
especially a problem since ensembles have to be formed at runtime (typically in
real-time). When employing machine learning, we can (after the initial training
stage) decide on placement of components into ensembles with linear time.

In our approach, we casted the problem of ensemble formation to a classifica-
tion problem. To give comparison how well this approach works, we implemented
two different classifiers—decision trees and neural networks. We show that with
enough data, we were able to train the predictor with high enough accuracy.
Not only that, when we plugged the predictor in the simulation of our running
example and evaluated the overall utility, we observed that some classifiers even
perform marginally better than the original solution that employed the constraint
solver. We attribute this to the fact that the classifier was able to generalize the
solution provided in the form of ensemble specification (i.e., logical predicates
and optimization function).

This paper provided the initial idea and indicative experiments. In future
work, we would like to focus on generalization which would allow the predictors
to be trained on smaller models and generalize them to larger scope. Also, we
are looking into how to further improve the prediction and how to include
reinforcement learning to take also into account the overall end-to-end utility
function (e.g. the time that the birds spend undisturbed in the field – as used in
our running example).
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