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Abstract— Test scenario generation for testing automated
and autonomous driving systems requires knowledge about the
recurring traffic cases, known as scenario types. The most
common approach in industry is to have experts create lists
of scenario types. This poses the risk both that certain types
are overlooked; and that the mental model that underlies the
manual process is inadequate. We propose to extract scenario
types from real driving data by clustering recorded scenario
instances, which are composed of timeseries. Existing works in
the domain of traffic data either cannot cope with multivariate
timeseries; are limited to one or two vehicles per scenario
instance; or they use handcrafted features that are based on
the mental model of the data scientist. The latter suffers from
similar shortcomings as manual scenario type derivation. Our
approach clusters scenario instances relying as little as possible
on a mental model. As such, we consider the approach an
important complement to manual scenario type derivation. It
may yield scenario types overlooked by the experts, and it may
provide a different segmentation of a whole set of scenarios
instances into scenario types, thus overall increasing confidence
in the handcrafted scenario types. We present the application
of the approach to a real driving dataset.

I. INTRODUCTION

Automated and autonomous driving systems (ADAS) are
commonly tested in simulation using scenario-based testing:
testing such driving systems in challenging traffic scenarios.
These are (extreme) instances of so-called scenario types.
Scenario types, or functional scenarios [17], capture recur-
ring traffic situations. One example is a vehicle following
another on the right lane of a two-lane highway when both
vehicles are overtaken by a third vehicle. During testing,
scenario types are used to generate scenario instances which
vary in different aspects [3], [4], [9]. In the example, different
instances may consider different driving speeds or distances
between the cars. The goal of scenario-based testing is to
identify instances that stress the autonomous driving behav-
ior (e.g., near crashes, abrupt acceleration or deceleration).
Proving that the system works as expected in the challenging
instances increases confidence in the system. This requires
that the list of known scenario types for test case generation
is “complete,” e.g. as discussed in [10].

The derivation of a “complete” list of scenario types is
challenging. A common approach in industry is to have ex-
perts manually create such lists of scenario types. However,
no matter how comprehensive such lists may be, the manual
creation process poses multiple risks: (i) certain scenario
types are overlooked, (ii) the mental model, according to

F. Hauer, T. Schmidt, and A. Pretschner are with the Department of
Informatics at the Technical University of Munich, Germany. (e-mail:
{florian.hauer, tabea.schmidt, alexander.pretschner}@tum.de).
I. Gerostathopoulos is with the Faculty of Science at the Vrije University
in Amsterdam, Netherlands. (e-mail: i.g.gerostathopoulos@vu.nl).

which the derivation is done, is inadequate. Using an expert’s
mental model for scenario type derivation influences the
way that scenario types are structured and at which level
of granularity they are located. For instance, an expert could
derive scenario types according to the existence of maneuvers
like braking or lane changing. Similarly, the derivation could
be stopped at the granularity level of contains a lane change
or contains a lane change to the right in front of another
vehicle on the target lane. Because this manual derivation
process necessarily introduces bias, there is an obvious need
to validate the results.

An alternative approach is to derive scenario types from
real driving data such as [11], [12], [16]. Such recordings
of real driving contain a high number of scenario instances,
from which scenario types can be derived in an automated
way (but which risk missing relevant scenario types [10]).
In this work, we present an approach that derives scenario
types in an automated way without relying on handcrafted
features and that is nearly independent of the mental model
of an expert. Note that because a human has to select
features and distance measures, it is impossible to completely
remove any kind of mental model—but we aim at minimizing
the introduced bias. Our approach yields scenario types of
various levels of granularity, structured independently of an
elaborate mental model. Thus, it can be used to evaluate
manually derived scenario types w.r.t. completeness and
adequacy. Note that a hand-written set of rules, e.g. to detect
a lane change in the data, depends on the mental model of the
person(s) providing the rules, similar to manual derivation.
We hence believe that both manual and automated derivation
of scenario types should be executed redundantly.

Existing works have suggested clustering techniques to
group recorded driving data according to specific features
extracted from each recorded drive. The technical solutions
presented in these existing works come with at least one
of the following technical limitations (see §V): (i) they are
restricted to scenario instances with only one or two vehicles;
(ii) they are not capable of handling multivariate timeseries
of variable length; or (iii) are restricted to scenario instances
of two seconds duration. Thus, such approaches cannot be
applied in general to arbitrary scenario instances. Moreover,
some approaches make use of handcrafted features that are
based on a mental model. For instance, [13] uses one feature
which explicitly encodes whether or not a scenario instance
contains a braking maneuver. We propose a solution that
overcomes such technical limitations of existing works.

Our contributions are two-fold. From a technical perspec-
tive, the presented approach generalizes existing clustering
approaches to scenario instances that are composed of any



number and any kind of timeseries, containing any number of
vehicles, and are of any duration. Thus, technical limitations
of existing approaches are overcome. From a methodological
perspective, the presented approach reduces the dependency
on mental models for automated scenario type derivation.
This way, it can potentially identify scenario types missed
during manual derivation improving completeness, and can
increase the confidence in the manual derived scenario types,
thus validating the mental model of the experts.

In §II, we introduce scenario-based testing. §III explains
the technical details of automated scenario clustering. Ex-
periments and insights are discussed in §IV, followed by a
presentation of related work in §V. We conclude in §VI.

II. OVERVIEW OF SCENARIO-BASED TESTING

The goal of scenario-based testing of ADAS is to subject
the driving system to a variety of traffic scenario types.
For each type, “good” test cases are generated, which are
test cases that can reveal potential faulty behavior [9], [21].
Intuitively, the more complete a set of scenario types is,
the more convincingly testing can ensure correct system
behavior. Currently, experts derive scenario types manually
according to their experience in form of a mental model. This
process comes with the described shortcomings. Our work
aims at the automated derivation of scenario types as depicted
in Fig. 1. The goal is to complement manual derivation by
potentially identifying scenario types that were overlooked
and by increasing the confidence that the manually derived
list of scenario types is complete.

An increasing amount of (publicly available) real driving
data (1) serves as foundation. The data sets were designed
for different purposes and collected in various ways and
locations (see [26] for a survey). While some data sets, e.g.
[16], are recorded from a single ego-vehicle’s perspective,
others are created from bird’s eye perspective, e.g. [11].

We focus on the automated clustering approach (2), which
aggregates real driving data into scenario types. The desired
result (3) is a set of clusters, each representing a scenario
type. Scenario instances that have the same structure are
hence grouped into the same cluster, e.g. several instances
where the ego-vehicle performs a lance change to the left
behind a decelerating other vehicle. Ideally, there is not
more than one cluster representing the same scenario type.
Conversely, clusters that contain scenario instances of two
distinct scenario types are not desired either. Determining
purity and minimality obviously requires careful inspection.
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Fig. 1. Automated scenario type derivation for scenario-based testing.

Moreover, automated clustering approaches cluster solely
based on syntactic features and do not interpret the scenario
instances in a semantic way, as a human expert would
do. The resulting clusters may be perfect in terms of the
clustering quality on a syntactic level, e.g. measured by
silhouette scores; and yet they may not represent the scenario
types that a human expert would expect.

As a second step, automated cluster interpretation (4) is
applied. It uses a living meta-model (5) for scenarios to
interpret clustering results and yield the desired scenario
types (6). A starting point for such a living meta model
are existing scenario meta models [1], [7], [23]. The idea
of a living meta-model for scenarios is to create a meta-
model and improve it over time, such that it increasingly
resembles the scenario types of real traffic. The meta-model
assigns semantic meaning to the cluster contents that are
merely more than timeseries. For instance, a “lane change”
is detected whenever the lateral position of a vehicle exceeds
a certain threshold. The cluster may be interpreted as the
scenario type shared by most of the scenario instances in the
cluster. This process yields a list of scenario types. Ideally,
such a list is as complete as possible, in that it contains “all”
relevant possible scenario types of real traffic [10].

Finally, for each scenario type in the list, a variety of
different approaches for test case generation (7) can be used
to generate “good” test cases (8) [8].

III. AUTOMATED CLUSTERING APPROACH

An overview of the approach is provided in Fig. 2. The
first step is data preparation (1). Real driving datasets usually
consist of n data segments or scenario instances di, i ∈ [1, n].
We assume this segments to be given; a real drive recording
of many kilometer length has to be segmented first. Two
such scenario instances are shown in Fig. 2, “car following”
and “cut-in.” A scenario instance di consists of a list of m
timeseries tsj,di

, j ∈ [1,m] that describe the evolution of
m object attributes related to an ego-vehicle over time. For
instance, a timeseries can be the evolution of the distance
sc1 − se, where se is the position of the ego-vehicle and
sc1 the position of a preceding vehicle (Fig. 2, top). Since
our technique can cope with any number of timeseries m,
it overcomes the technical limitations of existing works that
only allow small or specific numbers. We will assume that
each scenario instance consists of the same list of timeseries.
The time interval of the m timeseries of a single scenario
instance is equally long, but usually differs among scenario
instances. This way, we overcome the technical limitations
of very short or fixed lengths scenario instances. Depending
on the dataset, the number of timeseries (attributes) m may
range from a dozen to even a hundred, capturing e.g. the
difference in longitudinal and lateral positions, velocities, or
accelerations between an ego-vehicle and vehicles on its left
lane, its right lane, its own lane, etc.

Once the data is prepared, normalization is applied. We
chose z-normalization (2) as suggested in [6], since it empha-
sizes the structure of the timeseries and neglects the absolute
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Fig. 2. Overview of the proposed approach.

values, desired as described above. For each timeseries tsj,di
,

z-normalization is applied individually.
For the computation of the feature vectors used for cluster-

ing, we use (3) Dynamic Time Warping (DTW) [19]. DTW
is one of several methods to measure the difference between
two timeseries. Those timeseries may be of different lengths,
and the key structural characteristics may be shifted and
stretched over time without affecting the final score of DTW
(contrary to e.g. Euclidean distance). We use DTW based
on the L1-norm; see e.g. [2]. In our example of Fig. 2, the
DTW distance between the timeseries of the two scenario
instances is 76.42, while the DTW distance between two
identical timeseries is 0. Based on this, a distance vector q
between two scenario instances di and dj can be defined as
qk = DTW (tsk,di , tsk,dj ) with k ∈ [1,m]. This means
q contains the pairwise DTW distances of the timeseries of
the two scenario instances. In our example, since we used
m = 1 timeseries of each scenario instance, q has length
1, in particular q = [76.42]. The final feature vector of
di is created by concatenating all distance vectors between
dj , j ∈ [1, n] and di. Such a feature vector of a scenario
instance can be understood as the difference to all other
scenario instances based on the individual timeseries. In total,

each feature vector has a length of n ∗m. This results in a
feature matrix M of dimension n× n ∗m.

Using such a similarity measure instead of handcrafting
features, our approach intuitively generalizes well. This con-
cept of feature computation—and with that the clustering—
does not depend on the mental model of an expert. Moreover,
by comparing timeseries in a direct way using DTW, instead
of comparing their summary statistics such as moving aver-
ages or min-max values, we preserve important patterns that
may be lost in aggregation.

The next step, columnwise min-max-normalization (4),
ensures that all features are scaled to [0..1]. Remember that
the feature vectors’ length is linear in the number of scenario
instances to be clustered. To reduce the dimensionality of
the feature vectors and facilitate clustering, we use Principal
Component Analysis (PCA) (5), a well-known statistical
procedure for dimensionality reduction. For our experiments,
the PCA was parameterized to keep 95% of the variance in
the features, which resulted in 15 dimensions (§IV).

For the clustering itself, we chose classic k-means (6),
since it allows for an easier interpretation of the clustering
results compared to other techniques. We also experimented
with hierarchical clustering, which yielded very similar re-
sults; and density-based clustering, which resulted in clusters
of undesired structure and quality and were difficult to
interpret. When using k-means, we do not prescribe the
number k of clusters. Instead, we run k-means for every k
from 2 to the number of scenario instances n and let a state
of the art knee/elbow detector [22] choose the best k based
on the inertia of the clustering results.

IV. EXPERIMENTS

A. The highD Dataset

We applied our approach to the highD dataset [11], which
is just one dataset containing well-structured highway traffic
data. The data was recorded from a bird’s-eye perspective
with the help of a drone-mounted camera. Fig. 3 shows an
exemplary picture. Each vehicle’s trip from end to end of
the field of view of the recording camera corresponds to one
scenario instance with this vehicle as ego-vehicle.

1) Data Preparation: Surrounding vehicles may be very
far away from the ego-vehicle due to the recording in bird’s-
eye perspective. Therefore, we apply pre-processing to the
data in form of a range of interest. Other vehicles outside
of this range are not considered to be neighbors of the ego-
vehicle. This region of interest should be the maximum range
at which other cars still influence the scenario type.

We chose 60m with the intuition that the scenario type
from the perspective of the ego-vehicle mainly depends on
the next and not so much on the second next car ahead or

Fig. 3. Exemplary image of the highD dataset
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Fig. 4. Eight car model for environment modelling of the ego-vehicle

behind. Another pre-processing step is to filter the scenario
instance for those where the ego-vehicle is of type “car,”
since we are interested in scenario types to test automated
and autonomous driving systems for passenger cars. Trucks
and other vehicle types may still be part of the environment.

2) Choosing Relevant Timeseries: There are several kinds
of timeseries in the data, including longitudinal and lateral
positions as well as velocities, and meta data, e.g. vehicle
type. Following the intuition of the range of interest, we
consider the eight cars around the ego vehicle at every time
step (Fig. 4) similar to [11]. Based on the available data,
we computed the longitudinal and lateral distances from the
ego-vehicle to those eight other vehicles. As long as there
is no such other vehicle at one of those eight positions, the
respective timeseries is set to 0. This results in m = 2 ∗
8 timeseries per scenario instance. Note that the eight car
model and the choice of time series can be understood as a
mental model. We argue, however, that this choice constitutes
a minimalistic model. In principle, the presented technique
can be applied to more cars and more timeseries to further
reduce the influence of the mental model. Scenario instances
are of different lengths, since vehicles pass the field of view
with different velocities. The number of time steps varies
between 200 for fast vehicles and 300 for slow ones.

B. Experiment Results

We cluster the data for a two-lane and a three-lane
recording, monitored over stretches of 420m, containing 346
and 414 scenario instances respectively. Clustering is done
for every number of clusters k from two to the number of
scenario instances n. A common way to identify the best k
is the one with the highest so-called silhouette score [24].
Fig. 5 shows the silhouette scores for both datasets and all k.
The maximum silhouette scores for both datasets is at k = 2,
which is not surprising: In the two-lane dataset, all scenario
instances have either other vehicles on the left or on the
right. Clearly, the best clustering is to divide the scenario
instances into two clusters, one for driving on each lane.
Potential lane changes are assigned to the cluster of the two
lanes on which the ego-vehicle drives for a longer duration.
For most of the scenario instances of the three-lane data, this
explanation still holds. Even though the best k equals 2, this
is not a helpful clustering result; we therefore seek the next
best k. However, for both datasets, a wide range of k provide
similar silhouette scores, making a clear decision impossible.
Therefore, we rely on the elbow (or knee) method [18] to
identify a good k. We apply this method to the inertias of the
clustering results (Fig. 6) and let the state-of-the-art elbow
detector Kneedle [22] identify the elbow, providing us with
k = 57 for two-lane data and k = 78 for three-lane data.
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Fig. 5. Silhouette score for each number of clusters in [2..n]
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Fig. 6. Inertias for each number of clusters in [2..n]; red line is the chosen
number of clusters by the kneedle algorithm [22]

To understand the experiment results, we manually in-
spected the 57 and 78 clusters and interpreted the clusters as
the scenario types that are shared by most of the instances
contained. Intuitively, one would watch the video recordings
to manually interpret the cluster representatives or run an
automated interpretation. We cannot present videos in this
paper nor can we show all the scenario type descriptions
of all clusters. Instead, we present the 16 timeseries of one
exemplary cluster of the two-lane data in Fig. 7. Addi-
tionally, we provide the clustering results for the presented
experiments online.1 For the two-lane case, the 57 clusters
represent, upon manual inspection, 38 different scenario
types. 38 < n = 57 is a result of the nature of traffic
data: Some scenario types are very rare compared to others,
which leads to more than one cluster for a single common
scenario type. For the three-lane data, we manually identified
67 distinct scenario types among the 78 clusters.

C. Threats to Validity

All experiments face threats to validity. We applied the
presented approach to the highD dataset, which is limited
in terms of data diversity, since the data is recorded on a
straight highway section of 420m length without ramps. To
transform the data from bird’s-eye perspective to ego-vehicle
perspective, we applied the discussed range of interest. By
inspection of the data, we chose a suitable value, which might
not be perfect to identify scenario types. For the clustering,
longitudinal and lateral distances are experimentally selected
as information source. It might be that there exists a better set
of timeseries. Similarly, there might be more suitable cluster-
ing techniques than k-means, even though we experimentally

1https://drive.google.com/open?id=
1JApX49mbT-zULq3uFmiRRm4ja5SWFG23
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Fig. 7. Shown are the 16 timeseries of five scenario instances that are contained in a cluster of the two-lane dataset. The five scenario instances are
plotted in blue, orange, red, green, and purple. The scenario instance plotted in blue is a good representative for this cluster. In this scenario instance, the
ego-vehicle drives on the left lane with a vehicle behind it, as seen in plot (E). Then, the ego-vehicle drives by another vehicle on the right lane, which
can be seen in the plots (G) and (H). Finally, the ego-vehicle performs a lane change to the right in front of the overtaken vehicle, which is indicated by
the jump from -2 to 2 in plot (M). This behavior defines the scenario type for this cluster.

found k-means to perform better than others. The quality of
clustering results strongly depends on the correct number of
clusters. We used the elbow method, which leaves room for
interpretation. We tried to mitigate eye-balling by using the
Kneedle [22] algorithm. However, there might still be better
numbers of clusters. The final experiment results have been
analyzed and interpreted manually.

D. Discussion

Our feature vectors (§III) are defined solely by the dis-
tance between one scenario instance and all other scenario
instances, based on the individual timeseries. These features
hence do not encode any further “semantics.” The clustering
depends on the timeseries data only. Information that is not
contained in the timeseries data cannot impact clustering:
scenario instances cannot be grouped according to this
missing information, and missing scenario types cannot be
found. For instance, if weather conditions should intuitively
impact the resulting clusters but weather information is not
input to the clustering algorithm, then the resulting scenario
types cannot distinguish different weather conditions, unless
of course this weather information correlates with other in-
formation provided as input (in this case, however, “weather”
cannot be identified as a relevant feature). The choice of data
in time series hence constitutes a mental model. Similarly,
we are aware that the eight-car-model constitutes a mental
model, but argue that it encodes a minimum amount of
information needed for clustering.

Selecting the number of clusters k can be understood as
the selection of a distance threshold up to which scenario
instances are put into the same cluster. Choosing more or
fewer clusters allows the adjustment of the granularity of
the resulting scenario types. We let the Kneedle algorithm
[22] automatically perform this choice to avoid further bias.

The resulting scenario types together with the provided
level of granularity are meant to provide redundancy w.r.t.
the scenario types (& granularity) of the experts’ manual
derivation. This raises the question of what the “correct”

level of granularity is for testing automated and autonomous
driving systems, since it is crucial for the safety argumen-
tation. Manual derivation of scenario types relies on the
correctness of the mental model of the expert performing
this derivation, which motivates the need for redundancy.
Our work provides a perspective on scenario types that is
barely influenced by mental models and can be used to
identify further scenario types and to validate the scenario
types yielded by manual derivation, both in terms of correct
granularity and completeness.

V. RELATED WORK

A multitude of existing works are concerned with cluster-
ing timeseries; see [15] for an overview.

In the domain of traffic engineering, the goal is to under-
stand the usage and demand of the road network [2] or of
single road sections [5]. Both works cluster two-dimensional
GPS position timeseries of individual vehicle trips from start
to destination. Since the position timeseries of a single vehi-
cle does not contain information about surrounding vehicles
and since such a trip is composed of a multitude of scenario
instances, their approach is not suitable to cluster single
scenario instances with traffic interactions to scenario types.
From a technical perspective, their approaches are limited to
the two-dimensional GPS position timeseries.

In [14] and [25], “driving encounters” between two ve-
hicles are clustered based on vehicle position trajectories.
The approach yields four [14] and ten [25] clusters where
one cluster contains driving encounters at crossings, another
clusters contains driving encounters where vehicles approach
each other on opposing lanes, and so on. Arguably, this level
of granularity does not provide a sufficient level of detail to
yield fine-grained scenario types. For instance, it ignores the
various different ways how two or more vehicles may interact
at a crossing. From a technical perspective, the approach is
limited to two-vehicle interactions while in reality scenario
instances take place with more than two vehicles.

In [20], an approach is presented that clusters collision



data to identify different types of collisions. Abstract, cate-
gorical information is used as input for the clustering, e.g. the
gender of the driver or three categories of injuries. Intuitively,
this approach is limited to the specific use case of collision
data composed of categorical data. It is not applicable to
(non-collision) driving data presented as timeseries.

The goal of [13] is to extract traffic scenario types from
simulated driving data. The approach is limited to scenario
instances of two seconds’ length and interactions between
two vehicles. The clustering is based on handcrafted features,
such as aggregations and characteristic points within the
timeseries, e.g. whether or not a braking maneuver took place
as well as the velocity of both vehicles at the start and at the
end of the two second time span. In reality there are traffic
scenarios with (i) more than two interacting vehicles and (ii)
usually such scenarios are longer than two seconds. Further,
handcrafted features come with the discussed shortcomings.

In sum, this paper closes the following gap: It overcomes
technological limitations, i.e. restrictions in the number of
vehicles, the total duration of the scenario, and the type,
number, and length of timeseries. Moreover, our approach
clusters without handcrafted features and, thus, arguably
relies on a minimum mental model of an expert.

VI. CONCLUSIONS

We motivated the need for scenario types by test scenario
generation, highlighting that the current manual derivation
by industrial experts poses a risk of incompleteness and
inadequacy. We proposed an automated clustering approach
to extract scenario types from real driving data. It solely
relies on the difference between the timeseries of recorded
scenario instances. We applied the presented approach to the
highD dataset [11]. The presented experiment results show
the application of the clustering to both a two-lane and a
three-lane highway recording. We discussed how the pre-
sented feature creation allows the clustering to yield different
levels of granularity, and how the clusters are influenced
by the choice of data, and distance measures according to
the eight-car-model, used for clustering. We have argued
that the partitioning of the scenario instances into types
is barely influenced by a mental model and the level of
granularity is not pre-set by an expert. As the clustering
results can therefore be used to evaluate handcrafted scenario
types, this makes the presented approach valuable from a
methodological perspective, in addition to overcoming the
technical shortcomings of existing works. However, further
research is necessary to understand what an adequate level of
granularity is for scenario types. It heavily influences the test
case generation and, therefore, also the overall assessment of
the driving system. We believe that the presented approach
is a first step in this direction.
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