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Abstract

Modern Cyber-physical Systems (CPS) include applications like smart traffic, smart agriculture, smart power
grid, etc. Commonly, these systems are distributed and composed of end-user applications and microservices
that typically run in the cloud. The connection with the physical world, which is inherent to CPS, brings
the need to operate and respond in real-time. As the cloud becomes part of the computation loop, the
real-time requirements have to be also reflected by the cloud. In this paper, we present an approach that
provides soft real-time guarantees on the response time of services running in cloud and edge-cloud (i.e.,
cloud geographically close to the end-user), where these services are developed in high-level programming
languages. In particular, we elaborate a method that allows us to predict the upper bound of the response
time of a service when sharing the same computer with other services. Importantly, as our approach focuses
on minimizing the impact on the developer of such services, it does not require any special programming

model nor limits usage of common libraries, etc.
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1. Introduction

Modern software systems and services are com-
monly distributed, composed of front-end applica-
tions running on end-user devices, and microservices
running in the cloud. This also holds for modern
Cyber-physical Systems (CPS), such as data-driven
applications for smart traffic, agriculture, or utilities.
These applications rely on data from sensors and
perform computationally-intensive tasks (data ana-
lytics, optimization and decision making, learning
and predictions) which cannot be executed on en-
ergy constrained devices and are therefore executed
in the cloud.
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However, the connection with the physical world
inherent to CPS requires these systems to operate
and respond in real-time, whereas cloud was pri-
marily built to provide average throughput through
massive scaling. Real-time requirements impose
bounds on response time, and when executing tasks
in the cloud, a significant part of the end-to-end
response time is due to communication latency.

The concept of edge-cloud aims to reduce this
latency by moving computation to a large number
of smaller clusters that are physically closer to end-
user devices. Throughout the paper, we use the
term edge-cloud in line with the definition of Satya-
narayanan [I], i.e., we assume that computation
which would be traditionally centralized in a data-
center (in the case of a regular cloud), is moved
to network edges, closer to the users. This differs
from the fog-computing (a related field of research),
where the workload is traditionally decentralized,
executing on end-user devices and a localized cloud
(e.g., on an IoT gateway) is used for off-loading.

While usage of edge-cloud computing reduces com-
munication latencies, edge-cloud alone does not guar-
antee bounded end-to-end response time, which be-
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comes more determined by the computation time.
The reason is that the cloud itself focuses on opti-
mizing the average performance and cost of com-
putation, but does not provide any guarantees on
the upper bound of the computation time of in-
dividual requests. What is needed to address the
requirements of modern cloud-connected CPS is an
approach that can reflect the real-time requirements
of modern CPSs even with the cloud in the compu-
tation loop.

Guarantees on a single request are the domain of
real-time programming. But that itself is rarely a
reasonable choice as it comes at a very high price
of forcing developers to a low-level programming
language, limited choice of libraries and the use of
a relatively exotic programming model of periodic
non-blocking real-time tasks.

In this paper, we advocate the use of standard
cloud technologies (i.e., microservices packaged in
containers running on top of Kubernetes) and mod-
ern high-level programming languages (e.g., Java,
Scala, Python) for development of microservices that
have real-time guarantees. We restrict ourselves to
the class of applications where soft real-time re-
quirements are enough (i.e., the guarantee on the
end-to-end response is probabilistic — e.g., in 99%
of cases the response comes in 100ms and in 95%
of cases the response comes in 40ms). As it turns
out this is a wide class of applications including aug-
mented reality, real-time planning and coordination,
video and audio processing, etc. Generally speaking,
this class comprises any application that has a safe
state and has a local control loop that keeps the
application in the safe state while computation is
done in the cloud. Consequently, the soft real-time
guarantee pertains to qualities such as availability
and optimality, but not to safety.

Also importantly, microservices of the considered
class work with continuous workload (i.e., processing
video or audio streams, etc.). Starting and closing
the workload (stream, etc.) are explicit operations.

In this context, the article presents an approach
to providing soft real-time guarantees on response
time of microservices running in a container-based
cloud environment (e.g., Kubernetes), with microser-
vices developed in high-level programming languages
(Java in our case).

In particular, we elaborate a method that allows
us to predict the upper bound of the response time
(at a given confidence level) of a microservice when
sharing the same computer with other microservices.
This prediction method is essential for controlling ad-

mission to the edge-cloud and for scheduling deploy-
ment of containers to computers in the edge-cloud.
Combined with adaptive control of deployment and
re-deployment of components, this enables provid-
ing microservices with probabilistic guarantees on
end-to-end response time.

An important feature of our approach is that we
aim to remove the burden of specifying the required
computational resources from the developer of ser-
vices that need soft real-time guarantees. To this
end, we treat microservices as black boxes and do
not require any apriori knowledge about the mi-
croservices from the developer. Instead, our system
performs experiments on the microservices to col-
lect the data needed for performance prediction and
deployment decisions.

In our approach, we are specifically targeting
privately-controlled (non-public) edge-cloud envi-
ronment, in which the edge-cloud operator controls
not only the infrastructure but also the deployed
microservices. This contrasts with public clouds,
in which the provider needs to cope with unknown
applications, unknown workloads, unknown clients,
etc.

The paper is structured as follows. Section [2]
shows a motivation example. In Section [3|we present
our approach and in Section [4]its evaluation. In Sec-
tion [5| we discuss limitations of our approach while
Section [6] shows related work. Section [7l concludes
the paper.

2. Motivation example

As a motivation example application, we use a
simplified yet realistic version of an augmented re-
ality use-case taken from our ECSEL JU project
FitOptiVi{l7 which focuses on developing an archi-
tecture for image- and video-processing for CPS.

The example application (Figure [1)) consists of a
client application running on a mobile device (e.g.,
mobile phone) and a service hosted on edge-cloud
nodes (close to the clients). The client application
captures a video-stream (via the phone camera).
The stream is sent to the service in edge-cloud for
analysis and “augmentation”. In our case, this com-
prises an identification of faces and lookup of names
in a database.

As a particular “cloud” technology, we are using
Kubernetes (KSS)ﬂ Listing |1) shows a piece of de-

Thttps://www.ecsel.eu/projects/fitoptivis
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Figure 1: Running example

ployment descriptor (in the YAML language E[) for
the example application. The deployment descrip-
tor captures the application’s architecture as a set
of microservices defined via Kubernetes’s Deploy-
mentSpec construct.

To work seamlessly, it is mandatory that “aug-
mentation” information is received by the client
without any significant delay and thus, in an ideal
case, the service that does the analysis should be
placed as close as possible to the device, i.e., in the
edge-cloud, and the service in the edge-cloud should
be collocated with other services (potentially from
different tenants) such that it can still deliver the
response in required time.

In this paper we focus on how to specify the
latency requirements and the general approach to
satisfy them. In particular, we address problem of
which services in the edge-cloud can be collocated
together such that edge-cloud resources are shared
by several services and the latency requirements of
each service in the edge-cloud are still met.

3. Managing Latency

In this section, we first outline our approach from
the perspective of a developer of an edge-cloud ap-
plication and present an overall architecture of the
approach. Then we describe an algorithm for pre-
dicting the response time upper bound of a mi-
croservice when colocated with other microservices.
Finally, we discuss the operational boundaries of
the prediction algorithm.

Shttp://yaml.org/

1 kind: Deployment

2 metadata:

3 name: recognizer-deployment

4 labels:

5 app: recognizer

6 spec: # microservice specification
7

8

9

template:
metadata:
labels:

10 app: recognizer
11 spec:
12 containers:
13 - name: recog
14 image: repo/recog
15 ports:
16 - containerPort: 7777

Listing 1: Deployment descriptor

3.1. General strategy

The emphasis in our work is to minimize impact
on the cloud-application developer. Essentially, in
our approach, the cloud-application developer cre-
ates the typical K8S artifacts (code, container and
deployment descriptor). The only extension brought
by our approach is that the developer specifies real-
time requirements (per service) in the K8S deploy-
ment descriptor.

These real-time requirements are interpreted by
the cloud platform, which co-locates the microser-
vices on the edge-cloud nodes in such a way that even
though the microservices interact performance-wise,
this performance interaction is below a threshold
which would cause violation of the soft real-time
requirements.

Contrary to the traditional existing means of
cloud deployment, the developer does not have to
deal with selection of VM type, number of virtual
CPUs, memory, IOPS, etc. Similarly, the developer
does not have to specify any auto-scaling rules (in-
cluding triggers). We believe that these concerns are
internal to the cloud and that the developer should
not be confronted with these questions because any-
way he/she does not typically have a well-justified
answer supported by experiments.

As such, we work with the clean abstraction where
the developer provides the application and the soft
real-time requirements. The responsibility to asses
performance of the cloud application (including re-
quired number of virtual CPUs, memory, IOPS,
etc.) lies on our edge-cloud platform. In our ap-
proach, the deployment in the edge-cloud happens
as follows: (1) The developer develops the appli-
cation as a collection of microservices and creates
the deployment descriptor where he/she specifies
the real-time requirements. (2) The developer sub-
mits the application to the edge-cloud. (3) The
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edge-cloud performs performance assessment that
consists of performance tests of the microservices
to determine their baseline performance and their
performance when co-located with other workloads.
This assessment answers the question whether the
soft real-time requirements can be guaranteed at
all and what deployment parameters (in terms of
virtual CPUs — shared or dedicated, memory, re-
served IOPS) must be allocated for the microservice.
(4) After the assessment is done, the edge-cloud in-
forms the developer (potentially including the price
for the service). (5) The developer confirms the
deployment. (6) The edge-cloud calculates and per-
forms the deployment using the measured data from
the assessment.

To capture the soft real-time requirements on la-
tency, we extend the K8S deployment descriptor by
additional section attached to specification of a mi-
croservice. Such an extended deployment descriptor
is shown in Listing [2}

Technically, the soft real-time requirements are
captured by the probes part of the deployment de-
scriptor (starting at line . A probe is a special
function (provided by the application developer)
allowing for performance measurements. The real-
time requirements are specified as statistical expres-
sions over the probes as shown in the example.

We assume that these probes are developed in a
way that a probe “emulates” a typical behavior of
one request for a particular actual microservice. The
probe has no inputs — it is a self-contained perfor-
mance test method that encapsulates the workload
(e.g., an image for the image recognition service) that
is needed to execute the performance test. Another
important point is that a probe can be executed
without affecting the functionality (in particular the
state) of the microservice — this allows us to execute
the probes even in a production environment to
asses if a microservice still complies to the real-time
requirements.

By connecting the soft real-time requirements to
the probes, we create a kind of SLA (Service-level
Agreement) between the developer and the cloud
platform that can be autonomously measured by
the cloud platform.

This way, the probes and the requirements over
them provide a simple and feasible contract between
the developer of a latency sensitive microservice and
our method for scheduling workload in the edge-
cloud. Thanks to the probes, our approach can
automatically assess the service while treating it as
a black box. This can be understood in fact as an

1 kind: Deployment

2 metadata:

3 name: recognizer-deployment

4 labels:

5 app: recognizer

6 spec: # microservice specification
7

8

9

template:
metadata:
labels:
10 app: recognizer
11 spec:
12 containers:
13 - name: recog
14 image: repo/recog
15 ports:
16 - containerPort: 7777
17 probes: # probes
18 - name: recognize
19 timingRequirements:
20 - name: recognize limit
21 probe: RecognizePeople
22 limits:
23 - probability: 0.99
24 time: 100 # Max. 100ms in 997
cases
25 - probability: 0.95
26 time: 40 # Max. 40ms in 957
cases

Listing 2: Deployment descriptor

automated creation of SLA rules and is one of the
key novelties of our approach.

Taking a look at the motivation example, the
application consists of a client part (capturing a
video stream) and the microservice detecting and
recognizing the faces plus a database microservice
with for name-face lookup. The database microser-
vice is not important now, as there are no timing
requirements placed on it (the recognizer loads all
necessary data from it at its start). As such, we
leave out the database for further discussion.

To allow specification of soft real-time require-
ments over the recognizer service, the developer
provides a probe that utilizes the same procedure
(as the regular APT of the microservice) for detecting
and recognizing a predefined face in a predefined
stream. Nevertheless the probe does not affect the
state of the microservice (e.g., the cumulative count
of detected faces).

To assess whether a microservice can be deployed,
all probes of the microservice are exercised both in
isolation and with predefined background workloads
to characterize the microservice’s resource demand
along three dimensions—CPU, memory, and IOPS
bandwidth. This allows the edge-cloud infrastruc-
ture to build a model of the microservice which is
then used to decide whether the service can be ad-
mitted and where to deploy it so that the timing
requirements can be met.



We exclude network from this characterization
because we assume that the latency sensitive traffic
on the network will be by an order of magnitude be-
low the overall capacity of the network and that the
latency sensitive network can be configured with a
dedicated QoS class that will give it priority over reg-
ular traffic on the network. As such, we can consider
the network (in connection to the latency sensitive
microservices) as a virtually unlimited resource.

3.2. Qwerall architecture

The overall edge-cloud architecture considered of
our approach (while running the motivation exam-
ple) is depicted in Figure [2 There are two views on
the architecture depicted — the infrastructure layer
(i.e., how the computers of the edge-cloud are orga-
nized) and the application layer (i.e., microservices
running on the computers).

On the infrastructure layer, the edge-cloud archi-
tecture consists of several Edge data centers (Edge
1, Edge 2, etc. — each of them consisting of several
computers), where microservices with timing require-
ments are deployed. Additionally, there is Central
data center, where microservices without require-
ments are deployed. The managed latency adap-
tation controller (in addition to be a management
interface of the edge-cloud) manages the deploy-
ment and re-deployment at individual data centers
through agents located at each center. Clients are
connected to microservices deployed to edge data
centers, typically to the closest one (but it depends
on actual utilization in the centers). Each client
can run several different applications depending on
different microservices.

Because we are targeting a privately controlled
edge-cloud, we assume the edge data centers to be
largely homogeneous, i.e., composed of computers
with similar or identical configuration.

On the application layer, the figure shows a pos-
sible deployment of two applications. The Client 1
and 3 run the motivation example, which has the
recognizer microservice deployed in the edge center
and the database microservice (without timing re-
quirements) running in the central center. Client
3 and 4 runs another application (which, in con-
trast to the motivation example, has only a single
microservice).

To ensure that the timing requirements are met
at run-time, we use the adaptive systems architec-
tural pattern where the managed latency adaptation
controller manages a K8S edge-cloud (consisting
of multiple data centers). The managed latency

adaptation controller interprets the soft real-time
requirements specified as part of the extended de-
ployment descriptor. It decides on how to collocate
the microservices and instructs an existing (unmod-
ified) K8S edge-cloud to perform such deployment.
The interaction between the managed latency adap-
tation controller and the K8S edge-cloud is realized
using the standard K8S API.

The managed latency adaptation controller im-
plements a MAPE-K self-adaptation loop [2], which
periodically checks whether the soft real-time re-
quirements are met and using Knowledge predicts
near-future requirements. This prediction enables
not only intervention after the detection of require-
ments violation but also, more importantly, proac-
tive reaction ahead of time if needed.

The same adaptation loop is used to manage ini-
tial deployment but also re-deployment of microser-
vices. Re-deployment is in fact nearly identical to
initial deployment — calculation of real-time require-
ments is done periodically within the loop and takes
into account the current placement of microservices
to prevent unnecessary re-locations.

In particular, in the Monitoring phase of the loop,
the controller periodically monitors the probes of the
currently deployed microservices and the resource
utilization on the computers in the edge-cloud clus-
ter. Then in the Analysis phase, the controller uses
the collected data and the microservice models to
perform a what-if analysis (using a prediction al-
gorithm described shortly) to evaluate deployment
alternatives for the microservices that are currently
running and the microservices submitted for deploy-
ment. If a (better) fitting deployment is found, then
the Planning phase comprises preparing low-level
deployment tasks for the selected alternative, which
are then carried out during the Ezecution phase
to re-deploy the microservices to satisfy the timing
requirements.

On each node, the information about a microser-
vice obtained during the assessment phase is used
to assign each deployed microservice the resources
needed to perform its tasks within the timing con-
straints. This resource allocation is strictly enforced
using features of the operating system, containeriza-
tion technology, or the virtualization platform. This
is necessary to prevent microservices from exceeding
their allocated share of resources (due to, e.g., a
sudden spike in the number of clients), which could
have a negative impact on the execution time of
other microservices. In our prototype, we enforce
the resource allocation using features of Docker and
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3.8. Performance prediction of collocated workloads

For the analysis of deployment alternatives, we
introduce a novel performance prediction algorithm.
It is based on a statistical characterization of mea-
surements followed by similarity comparison, reveal-
ing dependencies between background workloads
(i.e., microservices). From measurements, we first
build a structured complex data set. Each time
a performance prediction of a particular scenario
is needed, relevant prediction data are extracted

into a linearized data fitting model. This model is
then solved by a constrained least-squares method,
giving a reliable order statistics estimate of the per-
formance, including its fidelity.

First, we explain how initial data are collected.
Assume we have n initial workloads A;,i =1,...,n
and [ parameters (random variables) characterizing
their behavior that we wish to measure (such as run
time). For each A;, p; scenarios of its run with other
background workloads are selected and measured.
To ensure robustness of the predictor, a fixed number
of k measurement repeats under various conditions



are realized, representing finally a random sample of
the length & for each of the [ random variables. The
scenarios include a single test measurement for each
of the workloads A; (i.e., a scenario without any
other background workload) and various selected
combined test. Denote m = .- | p; the total num-
ber of tested scenarios. To simplify the exposition,
we use below the standard MATLAB tensor notation
(rather than multidimensional algebra notation) for
selecting its particular subblocks. The initial data
set is then represented by three data structures:

o S & RFXIXm. A three-way tensor, where each
of the frontal slices (i.e., a k x | matrix S(;,:
,1)) corresponds to the same scenario with the
rows being the repeated measurements. The
frontal slices are organized such that the p;
scenarios corresponding to the same workload
A; represent a subtensor S(:,:, ¢ : ¢+ p;) with
the single test being its first frontal slice.

e M e Z,™*™: A matrix with the entries being
positive integers (including zero). The i-th col-
umn of M encodes the scenario corresponding
to the i-th frontal slice of S. Here M(i,j) =0
in case of the i-th processes being not included
in the j-th scenario, while M (4, j) # 0 gives the
number of background runs otherwise.

e v € Z," A vector with the entries being
positive integers. It represents a compressed
row encoding of organization of scenarios in
the tensor S allowing for fast access to relevant
frontal slices during the computation. Here
v(l) = 1, while v(i + 1) — v(i) = p; for i =
2,...,n. Then, eg., S(;,:,v(9)),i = 1,.
are the single test frontal slices of S.

Figure [3| illustrates the data set. The gray blocks
in S and M represent data corresponding to mea-
suring performance of the same workload A;. The
position of the blocks is encoded by the entries of the
vector v, the block in S is formed by frontal slices
on the positions from v(i) to v(i + 1) — 1, similarly
for the columns of M. Figure [d] gives an example of
initial data for three workloads, where for each of
them one single test (odd columns of M, odd frontal
slices of ) and one combined test (even columns
and slices) is available.

Having the initial data S, M and v, the prediction
approach consists of three phases:

e data preprocessing (evaluation of statistical
data representation),

e task fitting (constraint linear regression for a
positive integer problem),

e data-based prediction (weighted combination
of predicted dependencies).

The first phase represents all computations that
can be done apriori to save the computational costs
in later phases.

PHASE 1: Here the goal is to evaluate several
statistical characteristics (for each of the given
scenarios) in order to capture dependencies of
the | parameters of interest on the measurement
conditions. We proceed as follows. We construct
a three-way tensor Sstat € RF*!*™  where the
frontal slice Sstat(:,:r), 1 < r < m always
corresponds to the r-th scenario. The first rows
in Sstat(:,:,r) will contain information about
statistical distribution of the measurements. In
particular, we compute the sample mean and
median value, selected sample percentiles (e.g.,
90%), standard and relative deviation, standard
error, and the difference between the sample
maximum and sample minimum value, i.e. (for

each column j, j =1,...,1):

Sstat(1,j,7) = kzz 1S(Z 3,7)

Sstat(2,j,7) = MED(S(:, j,7))

Sstat(3,j,7) = 90thPERC(S( ,7))

Sstat(4,7,7) = \/k T ZZ 1 Sstat( j,r) — S(i,7,7))?
Sstat (b, j,r) = Sstat(4, j,r)/Sstat(1,j,r)
Sstat(6,j,r) = Sstat(4,4,7)/ Vk

Sstat(7,4,1) = max;—1 1 S(i,5,7) —
ming—1,..x S(i,j,7)

While the characteristics such as mean or median
indicate some typical behavior, the sample maxi-
mum and minimum capture information about the
extreme measurements. Their difference is used
later for effective penalization of measurements with
lower fidelity, ensuring reliability of the performance
prediction. Alternatively, one could determine here
prior bounds for the confidence intervals of the sam-
ple percentiles of interest.

The last block of rows in Sstat(:,:,r) contains
various quantities allowing to reveal the depen-
dencies between the performance of workloads
A;;i =1,...,n. These include in particular slow-
down parameters corresponding to the difference
between the sample percentile of the random sample
in case of A; running separately (single test) and
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running with other background workloads (general
scenario). E.g., the absolute and relative version for
90*"PERC is given by

Sstat(8, j,r) = Sstat(3,j,r) — Sstat(3, j, s)
Sstat(9,j,r) = Sstat(8, j,r)/Sstat(3, 7, s),

where for a particular r we find i such that

v(i) < r < (v +1)—1) and put s = v(i).

Similarly, influence parameters can be determined
representing influence of background workloads
on the estimated lower and upper bounds of the
confidence intervals.

PHASE 2: Having the initial data .S, M, v, their
statistical characteristics Sstat and a user-specified
prediction requirement (i.e., a question), we first

need to detect precomputed scenarios relevant for
the prediction. We allow two types of scenario ques-
tions:

e Ql: performance prediction for one of the al-
ready tested workloads 4;, i € {1,...,n},

e 2: performance prediction for a new workload
A, +1 with available single test.

For Q1, the situation is simpler. The prediction
must be based on the statistical characteristics of
the scenarios for A;. In order to build the prediction
model, we extract the p; = p; — 1 columns of the
integer matrix M (encoding the scenarios for the
slices of S) corresponding only to the workload A;,
except the column for the single test, i.e.,

My =M, (v(@E)+1): (v(i+1)—1)).

In Figure 3| this corresponds to the gray block in M,
except of its first column. The questioned scenario
is represented by an integer vector b € Z," with
meaning analogous to that of a column of M, i.e.,
we put b(i) = 0 in the case of the workload A; not
being included in the scenario and b(7) # 0 otherwise.
This gives us the data fitting problem

Mll‘%b



modeling the unknown correlation between the ques-
tion b and the preselected initial scenarios M7. Such
data fitting problem can be solved by various meth-
ods. In order to reduce underestimating in PHASE 3,
it is necessary to ensure that the entries of x are not
negative. For high-dimensional sparse models with a
large number of measurements, it has been shown re-
cently (see [3]) that constraint least-squares method
with nonnegative constraint (NLS) is advantageous
over other standard approaches. Modifications of
other methods including nonnegative least-mean-
square algorithm (see [4]) are also applicable. We
determine x by solving the NLS problem

min [|p—M; o]
TERPi

where ||| is the Euclidean norm (other norms such
as weighted ones can be also considered). Then the
nonzero entries of V5 determine which frontal
slices of Sstat are relevant for the prediction and
the value zVE9 (i) itself represents a positive weight
(i.e., importance) of the corresponding slice. Note
that if £ = 0 then the model M; does not match the
question b meaning that not enough measurements
are available for the prediction. This situation has
to be solved separately either by including an extra
measurement into S (if available) or by modifying
Q1 to Q2, where the single test for A; is removed
from further processing of this particular task to
avoid cycling.

For Q2, the prediction is based on detecting a
workload among the tested ones, ie., A;, j =
1,...,n, that most resembles the new A, 1. Having
in hand the new single test Snew € R¥*! for A, 41,
we compute its characteristics Sstatnew € RFX!
similarly as we did for the initial data. Then we com-
pare selected characteristics from Sstatnew with the
frontal slices of Sstat corresponding to single tests.
Considering some similarity measure f between se-
lected sample characteristics, we are looking for a
workload A; such that

Aj=arg min f(4;, Ani1).
j=1,....n

One can choose here for example a carefully selected
weighted vector norms of the difference between
mean, median and deviation for most relevant
measured random variables (i.e., columns of Sstat).
Now we proceed as in Q1 with A, ;1 replaced by
the workload A;. The tensors S, Sstat, the matrix
M and the vector v are extended by the new
measurement.

subject to 0 < (i), i =1,...,p;

PHASE 3: Based on the approximation N9,
a weighted combination of workload dependencies
(saved in Sstat) can be used to predict the behavior
of the scenario from the question Q1 or Q2. Recall
that the columns of the matrix M; encode the only
relevant scenarios detected in PHASE 2 with their
importance represented by the nonnegative entries
of VIS, Thus we first extract p; frontal slices of
Sstat corresponding to M;. Then we weight them
by N5 as follows

Rstatj = aj  2VF5(4) % Sstat (s, :, (v(i) + 7)),

j=1,...,D; where o;j > 0 is a safety penalization
coefficient (determined by scaled difference between
the sample maximum and minimum measurement
value). Note that each resulting Rstat; € R**! is a
matrix. A characteristic of interest for the scenario
Q1 or Q2 can then be predicted from Rstat;,j =
1,...,p;, where the key role is played by the last
block of rows representing slowdown parameters for
the percentiles. For example, an estimate of the
90" PERC of the expected performance for Q1 is
obtained by shifting the percentile for the single
test of A; (saved in Sstat(3,:,v(¢))) by a linear
combination of estimated weighted slowdowns as
follows

Di
90""PERC(Q1) ~ Sstat(3,:,v(i))+ Y  Rstat;(8,:).
j=1

The whole prediction algorithm is summarized in
the schema in Figure [

3.4. Ensuring operational boundaries

The interactions among colocated microservices
sharing the underlying physical resources are gener-
ally complex, and often non-linear—especially when
the physical resources are nearing exhaustion. Con-
sequently, the prediction accuracy varies with dif-
ferent combinations of applications and resources
used, and cannot provide actionable results for all
possible scenarios.

To ensure that the predictor can be used with
confidence within the adaptation loop, it is critical
to establish the predictor’s operational boundaries
and ensure that the managed system stays within
the boundaries. The boundaries can be expressed
as limits on the utilization of the CPU, memory,
and IO resources used to characterize microservice
workloads.
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Figure 5: Algorithm overview

To demonstrate the predictor and its limits along
the three dimensions, we use a synthetic bench-
mark tool to execute colocated workloads target-
ing a particular resource (CPU, memory, 10 band-
width) at varying levels of utilization and com-
pare the predicted and the actual benchmark run
times. All experiments were carried out on a 64-
bit quad-core Intel systenﬁ running Fedora Linux
2@ Hyper-threading, turbo-boost and other power-
management features were disabled to obtain stable

timing results.

3.4.1. CPU utilization

In this experiment we focus on the interactions
between colocated CPU-bound microservices, and
analyze how their response times change as their
demand for CPU increases and exceeds the available
CPU capacity. To this end, we evaluate a scenario
in which we deploy 5 CPU-bound microservices to
5 containers. Each container is limited to 25% of

4Intel Xeon E3-1230v6 Q 3.50GHz,

https://ark.intel.com/products/97474/
Intel-Xeon-Processor-E3-1230-v6-8M-Cache-3-50-GHz-

°Kernel 4.17.3-200.fc28.x86_ 64; Docker 18.03.1-ce; Open-
JDK 1.8.0_191
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Figure 6: Benchmark response times for 5 colocated microser-
vices with varying levels of CPU utilization.

the overall CPU capacity, i.e., one core of the ex-
perimental quad-core machine. We simulate the
microservices using our benchmark tool, and vary
the target CPU utilization of each service in the
range [0%, 5%, 10%, .., 100%] (at 0% utilization
the benchmark only passively waits, while at 100%
utilization it only performs CPU-intensive calcula-
tions), which results in overall CPU demand ranging
0% to 125%.
The results of the experiment are shown in Fig-
ure [6] Points on the X axis correspond to CPU
utilization in each of the 5 containers, while the Y
axis shows the response time. The blue boxplots
represent observed response times for each container
CPU utilization setting, with the red line connecting
90th percentiles of the observed response times. The
response times remain stable until 75% container
CPU utilization (94% overall), and start to increase
when the container CPU utilization reaches 80%
(100% overall). The response time grows linearly
with the CPU overcommitment percentage, and at
100% container CPU utilization (125% overall) the
response time is roughly 125% of the value observed
while the overall CPU capacity was sufficient, which
matches the intuition.
In contrast, the predicted response time 90th per-
centile (green line) starts increasing only after the
container CPU utilization reaches 95% (119% over-
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Figure 7: Benchmark response time for 3 colocated microser-
vices with varying levels of IO utilization.

all), which is too late. Because the model does
not specifically account for context switching and
other system overheads consume a variable portion
of the overall CPU capacity, we should limit the pre-
dictor’s operational boundaries to less than 100%
overall CPU utilization (94% in this case).

3.4.2. 10 throughput

In this experiment we focus on the interactions
between 10-bound microservices accessing a shared
disk, and analyze how their response times change
as their demand of IO bandwidth increases and
exceeds the available IO capacity. We define the
available IO capacity as the maximal amount of
data which a computer can read/write per second,
and IO utilization as a percentage of this capacity
used by a microservice. This time we deploy 3
microservices simulated by our benchmark tool to 3
containers, and vary their IO utilization from 0% to
85%, resulting in overall IO demand ranging from
0% to 255%.

The results of the experiment are shown in Fig-
ure [7} The points on the X axis correspond to IO
utilization in each of the 3 containers, while the
Y axis shows the response time. We can observe
that until 20% container IO utilization (60% over-
all), the median and both quartiles of the response
time remain stable, while the extremes grow linearly
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with increasing utilization. At 25% container 10
utilization (75% overall), the response time inter-
quartile range becomes wider as the microservices
start to influence each other and the variance of
the response times increases. At 35% container 10
utilization (105% overall), the median response time
starts to increase, and grows (along with the ex-
tremes) in a linear fashion as the overall demand for
10 bandwidth exceeds the available IO capacity.

The predictor provides relatively conservative esti-
mates of the response time 90th percentile (above or
slightly below the observed 90th percentile) through-
out the entire range. This suggests that the predic-
tor’s operational range could include situations in
which the overall IO demand exceeds the available
10 capacity, possibly depending on the workload.
We therefore conservatively limit the predictor’s
operational boundary to 100% of the available IO
capacity.

3.4.83. Memory utilization

In this final experiment we focus on the inter-
actions between memory-bound microservices, and
analyze how their response times change as their
memory utilization increases. We define memory uti-
lization as a fraction of time a microservice spends
on memory-bound tasks—allocating, reading, and
writing into memory. Note that while we do not
explicitly define the available (system-wide) memory
utilization capacity, we assume that a single service
spending all of its processing time performing the
memory-intensive operation can (almost) saturate
the memory subsystem. Similarly to the previous
experiments, we deploy 3 microservices simulated
by our benchmark tool to 3 containers, and vary
their memory utilization from 0% to 100%, resulting
in overall memory utilization demand ranging from
0% to 300%.

The results of the experiment are shown in Fig-
ure[§] The points on the X axis correspond to mem-
ory utilization in each of the 3 containers, while the
Y axis shows the response time. We can observe
that as the memory utilization in the containers
increases, the response time median and the 90th
percentile increase in an exponential fashion while
the inter-quartile range remains stable

The predictor provides useful estimates of the
response time 90th percentile until 65% container
memory utilization (195% overall), which is where
we set the operational boundary limit of the pre-
dictor. However, this limit is based on a synthetic
benchmark in which we can control the amount of
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Figure 8: Three concurrent processes testing memory utiliza-
tion

memory-intensive work performed. This is not pos-
sible for normal workloads, therefore we need an
externally observable metric (similar to IO through-
put or overall CPU utilization) which we can use
to ensure that the system stays within the oper-
ational boundaries. We use the rate of last-level
cache (LLC) misses per millisecond, because it was
strongly correlated (growing linearly) with the mem-
ory utilization. On the experimental platform, the
195% overall memory utilization representing the
operational boundary corresponds to approximately
to an LLC miss rate of 210000/ms.

4. Evaluation

In this section, we evaluate the ability of the
predictor to predict performance of a workload
while executing together with other workloads. Be-
cause there are no established edge-cloud application
benchmarks that could be used to evaluate our ap-
proach, we opt for the next best option, which is to
emulate an edge-cloud application workload using a
combination of custom benchmarks and benchmarks
from existing benchmark suites.

We use workloads from the Scalabench [5] suite
(which extends the DaCapo [6] suite with Scala-
based workloads), and the stress—ndﬂ suite. All the

Shttp://kernel.ubuntu.com/~cking/stress—ng/
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suites are well established, with the Scalabench suite
providing memory- and computationally-intensive
workloads executing on the Java Virtual Machine,
and the stress-ng suite providing a variety of smaller
benchmarks targeting different computational re-
sources. The granularity of the benchmarks from
these suites also allows us to easily wrap them as
edge-cloud applications that perform considerable
amount of work in response to a lightweight re-
quest. We have also implemented a number of cus-
tom benchmarks representing workloads that per-
form operations on commonly used data structures,
JSON processing, compression, or face recognition.

This gives us a relatively wide gamut of 17 bench-
marks which reflect workloads that are likely to be
found in edge-cloud applications. The benchmarks
are listed in Table [1} categorized based on their
resource usage.

Our experimental evaluation models a situation
in which the scheduler uses the predictor to deter-
mine whether a new workload can be admitted to
the system. Benchmarks are used to represent both
the workloads already executing in the system and
the workload being subjected to admission gating.
To predict the performance of the workload being
admitted, the predictor uses measurement data from
isolated execution of each of the workloads (both
already executing and the one being admitted), as
well as data from combinations of a subset of the exe-
cuting workloads with the workload being admitted.
In summary, the scheduler does not have complete
information (i.e., it does not have measurements
reflecting simultaneous execution of all the work-
loads), and uses the predictor to determine whether
the system will be still able to provide adequate
level of service if the new workload is admitted to
the system.

Given the number of benchmarks evaluated, the
number of benchmark combinations is too high and
the results are too numerous to present in an article.
We therefore present results for combinations of
the four most representative benchmarks and make
the results of evaluation with other benchmarks
available onlind’]

The results presented in this section are therefore
limited to the following benchmarks:

e A CPU intensive application (referred to as
“A”) is represented by the Sunflow bench-

“https://smartarch.github.io/
jss-2019-benchmark-results/
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mark from the DaCapo suite (version 9.12-
Sunflow utilizes a multi-threaded
global-illumination rendering system for photo-

bach).

realistic image synthesis.

e A disk intensive application (referred to as

“ZB”) is represented by the unzip too:ﬂ The
application extracts a 188MB zip file contain-
ing 4396 files and 184 directories, producing a

total of 1.08GB of uncompressed data written

to disk.

8https://github.com/zeroturnaround/zt-zip

Resource Demand

Benchmark ID | Source group | Benchmark description CPU RAM | Disk

A scalabench Renders a set of images using ray trac- | ++++ | + *
ing

F scalabench In-memory benchmark of transac-| ++ ++ *
tions in banking application

H scalabench Framework to optimize ABC, SWC, | ++ +++ *
and SWF files

K scalabench Stanford Topic Modeling Toolbox +++ 4+ | *

O scalabench Simulates programs run on a grid of | ++ + *
AVR microcontrollers

SMATRIX stress-ng Transposition on a 4096x4096 matrix | + 4+ | *

JSOND own Generates and writes JSON data to | ++ + +
disk

PDFD own Generates images and writes them as | + ++ +++
PDF file to disk

SORTD own Generates, sorts and writes random | + ++ ++
numbers to disk

CYPHERD own Generates random string, cyphers it | + ++ ++
and writes to disk

AVL own Inserts and then removes 1 000 000 | + ++ *
items to AVL tree

RB own Inserts and then removes 1 000 000 | + ++ *
items to Red—Black tree

FLOYD own Floyd-Warshall’s all pairs shortest | + +++ *
path search on 2 200 vertices

ROD own Rod cutting problem using dynamic | +-+ ++++ | *
programming

EGG own Egg dropping problem using dynamic | + +++ *
programming

FACE own Human face detection in images from | + +++ +
the local directory

7B own Zip archive extraction of compressed | + + ++++
folder with many small files

Table 1: List of selected benchmarks. The meaning of the + symbol is different for each of the columns. For the CPU column,
every + represents an additional 25% of commenced total CPU usage. In the RAM column, the first + corresponds to at most
35 000 last level cache misses per millisecond of execution, each additional + represents additional 70 000 LLC misses/ms. In
the Disk column, the * symbol represents negligible disk usage (<5%), the first + symbol represents 5%-25% disk utilization,
and each additional + represents additional 25% of disk utilization.
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e A memory intensive application (referred to as
“SM”) is represented by the matriz benchmark
from the stress-ng suite. The application re-
peatedly performs transposition of a 4096x4096
matrix.

e A CPU and memory intensive application (re-
ferred to as “FACE”) is represented by the JJIL
libraryﬂ The application detects human face
on 148 input images and generates the same
amount of output images overlaid with a mask
that identifies the detected faces.

In the following experiments, we evaluate the
accuracy of the prediction algorithm in two scenarios
corresponding to how our edge-cloud scheduler uses
the algorithm. Specifically, we compare a predicted
and a measured percentile of the response time of a
workload executing together with a combination of
other workloads.

While it would be unreallistic to expect the pre-
diction algorithm to be completely accurate, of the
two possible kinds of inaccuracy we would prefer the
predictor to make conservative estimates (predict-
ing longer response times than measured) so that
the scheduler can provide response time guarantees
and ensure the system does not leave operational
boundaries of the prediction algorithm. At the same
time, the prediction must not be too conservative,
because that would prevent the scheduler from colo-
cating workloads, leading to a system that meets
(probabilistic) response time guarantees, but does
not utilize resources efficiently.

In the first scenario, the scheduler measures per-
formance for all benchmarks executing individually,
and for all combinations of pairs of colocated bench-
marks. The scheduler then uses the measured data
to predict the performance of a third benchmark
executing together with a specific pair, which repre-
sents a situation in which an application (the third
benchmark) is being considered for admission into
the system.

The results for the first scenario are shown in Fig-
ure 0] The values on the X-axis represent different
combinations of workloads. Enclosed in parenthe-
ses are the already-deployed pairs of workloads for
which the scheduler has performance data available.
The values on the Y-axis correspond to response
time of the third benchmark being deployed. The
red circles in the plot represent the measured 90th

9https://code.google.com/archive/p/jjil/
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Figure 9: Evaluation of prediction algorithm predicting
triplets.

percentile of the benchmark response time, while
the green circles represent the predicted value of
the percentile. We can observe that in 20 out of
31 configurations the predictor estimates the re-
sponse time 90th percentile conservatively (higher
than measured), and stays within a relative range
of [-21%, +15%] below/above the measured value,
with an average of +4.9%.

In the second scenario, the scheduler also mea-
sures performance for all combinations of three colo-
cated benchmarks, and uses the measured data (sin-
gle, pairs, and triplets) to predict the performance
of a fourth benchmark being colocated with a par-
ticular triplet. The results for the second scenario
are shown in Figure [I0] We can observe that in 11
out of 17 cases the predictor estimates the response
time 90th percentile conservatively, and stays within
a relative range of [-10%, +26%)] below/above the
measured value, with an average of +5.3%.

The results exclude combinations containing more
than one instance of the “ZB” benchmark, because
such a configuration falls outside the operational
boundary of the predictor—a single instance of
the “ZB” benchmark utilizes 65% of the 10 band-
width. Similarly, we excluded combinations contain-
ing three or more instances of the “SM” benchmark
because they fall far outside the operational bound-
ary of the predictor expressed by the number of
last-level cache misses per millisecond—the limit
is 210000/ms, while three and four instances of
the “SM” benchmark exhibit an LLC miss rate of
450000/ms and 600000/ms, respectively.
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5. Discussion

In general, the problem of managing QoS in a
cloud is extremely complex, providing many prob-
lem facets, each sufficient to sustain an entire re-
search area. Consequently, the amount of existing
work is daunting, making it nearly impossible to
find a solution fitting a particular context and pro-
viding usable interfaces to developers. We therefore
take advantage of the edge-cloud context to avoid
some of the complexities traditionally associated
with QoS management in public clouds, where a
generic solution has to deal with unknown appli-
cations, unknown workloads, unknown developers,
and unknown clients.

We are aware that the operational boundaries of
the prediction algorithm may depend on the partic-
ular combination of colocated workloads. Therefore
in general, the operational boundaries themselves
may need to be predicted as well, which goes be-
yond the scope of this paper. However, in this par-
ticular context, we assume that the set of possible
microservices or microservice types for a particu-
lar (privately controlled) edge-cloud infrastructure
will be somewhat restricted (with a bias towards
latency sensitive applications). We have therefore

15

chosen approximate static boundaries determined
using synthetic benchmarks and leave the prediction
of the operational boundaries to future work. A re-
stricted set of possible microservices or microservice
types also provides some “combinatorial headroom”
in the staging phase where the resource demand and
performance interference between combinations of
microservices is evaluated.

The IO utilization in our model of the edge-cloud
microservice demands does not include network
bandwidth, and we consider it unlimited for model-
ing purposes. The rationale for this decision is that
edge-cloud applications are very likely to be latency-
sensitive, but not bandwidth-intensive—that would
defeat the primary purpose of edge-cloud which is to
reduce communication latencies due to distance. We
therefore assume that the network infrastructure can
be configured to assign time-critical network traffic
a QoS class with high priority and that latency-
sensitive services with response time requirements
will not saturate the network with bulk transfers.

6. Related work

Cloud computing has been both a blessing and a
curse. Cloud users can benefit from unprecedented
availability and elasticity of resources, but the ben-
efits come with strings attached. Cloud infrastruc-
ture and service providers have to continually bal-
ance the tension between efficient resource utiliza-
tion (which determines costs) on the one hand, and
quality-of-service guarantees demanded by providers
of latency-sensitive (LS) applications on the other
hand. Management of cloud resources has there-
fore become a vast and quickly moving research
area, with many surveys mapping and categorizing
the problems, challenges, and the state-of-the-art in
various problem domains [7, [8] [9} [T0] [T, 12} [T3].

To position our work in the context of other re-
search in the area, we first review some of the works
(ordered chronologically) that we consider most rele-
vant to our approach and then discuss specific points
that define the frame of reference for our research.
Given the amount of existing research in this area,
our selection is admittedly far from exhaustive.

Q-Clouds [14] is a QoS-aware control framework
which transparently adjusts resource allocation to
mitigate effects of interference on shared resources.
Q-Cloud first profiles the virtual machines (VM)
submitted by clients on a staging server to assess
the amount of resources needed to attain the desired
QoS without interference, and then manages the



resources allocated to the deployed VMs in a closed
control loop.

Cuanta [I5] is a technique for predicting perfor-
mance degradation due to shard processor cache for
any possible placement using a linear (as opposed to
exponential) number of measurements. Applications
are replaced by a synthetic clone which is tuned to
mimic the application’s cache pressure, and inter-
ference due to colocation is predicted based on a
matrix of know interference effects between different
configurations of cache clones. Even though Cuanta
is not a full-fledged cloud scheduler, it was used
to make better workload placement decisions for a
given performance and resource constraints.

Bubble-Up [I6] avoids pairwise colocation profil-
ing by characterizing the QoS degradation in LS
applications using a synthetic workload with config-
urable memory subsystem stress test (the bubble),
and the contentiousness of batch applications using a
reporter workload with known sensitivity curve. The
contentiousness of a batch application is mapped to
a configuration of the bubble, which is then used
to predict the interference inflicted by the batch
application on the LS application. Bubble-Flux [17]
improves on Bubble-Up by performing online profil-
ing for LS workloads to account for workload phase
changes and to identify more colocation opportuni-
ties.

Paragon [I§] is an online interference-aware sched-
uler which uses collaborative filtering to classify in-
coming applications based on limited profiling signal
and similarity to previously scheduled applications.
It does not differentiate between batch and LS appli-
cations and schedules applications so as to minimize
interference and maximize utilization. Applications
are classified for interference tolerance using mi-
crobenchmarks stressing a specific shared resource
with tunable intensity, which are run concurrently
with an application to find out the interference level
at which the application’s performance falls below
95% of its performance in isolation. Quasar [I9]
improves on Paragon in that it also performs re-
source allocation instead of only resource assignment.
Quasar extends the classification engine of Paragon
to consider scale-out and scale-up scenarios, as well
as different workload types with different constraints
and resource allocation controls. It also provides
an API that allows expressing the performance con-
straints regarding throughput and latency.

CloudScope [20] is a representative of model-based
approaches to QoS-aware cloud resource manage-
ment and uses a discrete-time Markov Chain model
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to predict performance interference of colocated
VMs. CloudScope runs within each host and col-
lects application and VM-related metrics at runtime.
The metrics serve to maintain an application-specific
model capturing the proportion of the time an ap-
plication uses a particular resource. The model is
then used to predict slowdown due to colocation
and ultimately to control placement of guest VM
instances as well as adjusting the resources available
to a hypervisor.

CtrlCloud [21] is a performance-aware cloud re-
source manager and controller, which optimizes the
allocation of CPU resources VMs to meet QoS tar-
gets. It maintains an online model of the relationship
between allocated resource shares and the applica-
tion performance, and uses a control loop to adapt
the resource allocation so as to progress towards
a probabilistic performance target expressed as a
percentile of requests that must observe a response
time within certain bounds.

Pythia [22] is a colocation manager which uses
a linear regression model to predict combined con-
tention on shared resources when colocating multiple
batch workloads with an LS workload. Pythia per-
forms contention characterization for each batch
workload running together with a particular LS
workload and removes batch workloads that are
too contentious to allow safe colocation. It then
selects a small subset of batch workloads to colocate
with a latency sensitive workload and measures their
combined contention to build a linear regression pre-
diction model for contention due to multiple batch
workloads.

In general, the approaches presented above, in-
cluding our own, aim to provide a performance- and
interference-aware self-adaptive system (an essential
part thereof) which manages resource allocation and
assignment in a cloud environment to achieve effi-
cient utilization of available resources while allowing
applications to meet their QoS target. Our selec-
tion illustrates the variety of approaches proposed
over the years, each fitting a different context, but
none able to claim to solve the problem once and
for all—our approach is not different.

Similarly to Pythia, our approach profiles appli-
cations in a staging area, but does not utilize proxy
workloads like most of the other approaches. We
profile the application-provided probes to determine
resource demands for representative workload, but
also periodically monitor the response time on these
probes to ensure that the current deployment pro-



vides the desired performance guarantees, which is
again similar to other approaches, with the excep-
tion of Bubble-Up and Cuanta. This is important
because by using dedicated probes, we do not force
developers to mix processing of proxy workloads
with regular user requests in the business logic of
an application. Also, the use of dedicated probes,
over which we provide guarantees, gives more precise
semantics to the guarantees and creates a suitable
contract between the application developer and the
cloud, which treats the applications as black boxes.

Unlike other approaches, our approach to dealing
with performance interference treats all resources
equally and relies on statistical characterization
and similarity to reveal dependencies between back-
ground workloads. We are aware of potential non-
linear relationships which might be difficult to pre-
dict using our model, and therefore actively limit
and most importantly enforce the operational bound-
aries of our prediction algorithm. This is where the
inherent integration of the prediction method with
the self-adaptation mechanism creates novelty in
our approach, as we not only use the prediction to
control the admission, but we also control admission
to preserve the quality of the prediction.

We specifically target (non-public) edge-cloud en-
vironment, which allows us to constrain the problem
and cater to context-specific details. Instead of VMs,
we focus on container technologies and on providing
probabilistic performance guarantees. We require
the developers to provide monitoring probes and to
explicitly specify performance objectives for these
probes, and only admit applications for deployment
if the system considers the objectives satisfiable.
Other than that, we treat each application as a
black box. Our focus on containers stems mainly
from their lower overhead and higher flexibility (com-
pared to VMs), which allows us to relocate services
more flexibly in response to mobility of end-users.

Another related area is represented by works tar-
geting service-level agreements (SLAs) in cloud en-
vironment, including edge-cloud. In general the
main difference between our approach and classic
SLAs for clouds is that we target a different type of
edge-cloud (non-public, privately-controlled), which
allows us to make additional assumptions about the
underlying infrastructure. Another difference is that
our approach is based on estimations of worst-case
response time (to provide soft-realtime guaranties),
while other approaches focus on estimating through-
put. Finally, our SLAs are interconnected with
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adaptation which is not retroactive but proactive,
i.e., we build a performance model of a microser-
vice from measurements and can therefore react
(proactively) to different situations.

In the following, we review some of the approaches
that differ from classic SLAs and bear more similar-
ity to our approach.

The work of Remesh et al. [23] deals with SLA-
aware scheduling and load-balancing. While the
general idea is similar to ours, their primary goal
is to load-balance services (i.e., re-deploy them to
another computer in the cloud) in order to keep
computers in the cloud evenly loaded and reduce
the chance of SLA breaches. The approach does
not measure service response time, and instead re-
lies on low-level information which has to be pro-
vided by the application developer, such as the re-
quired amount of memory, CPU speed in terms of
instructions-per-second, etc. The semantic gap be-
tween the concepts used in the SLA specification
and the domain-specific application requirements
makes formulation of an SLA difficult.

Cerebro [24] is similar to our approach in that it
first statically analyzes services to find out important
calls, measures the performance of these calls at
runtime, and predicts bounds on response time using
time-series analysis. The main difference is that
Cerebro focuses only on a specific set of calls while
our approach measures the performance of a service
function as represented by a probe. Our approach
does not require any other information about a
service and does not rely on a fixed knowledge of
what is important. In addition, our approach uses
the prediction results to manage deployment and
re-deployment of services in the cloud.

Panda et al. [25] presents an SLA-based schedul-
ing algorithm for a cloud. Similarly to our approach,
the authors consider clouds composed of multiple
data centers and schedule service for deployment
to data centers so as to honor the SLAs. Contrary
to our approach, the authors expect SLAs to be
provided together with the services and consider
only execution time, cost, and penalty for SLA vio-
lation. The scheduling algorithm then attempts to
minimize service execution time and cost.

The resource aware scheduler SLA-RALBA [26]
is similar to the previous approach but considers
also heterogeneous clouds.

Also similar is the approach of He et al. [27], in
which the authors consider re-deployment of services
in edge-cloud and cloud environment, but focus
mainly on minimization of the re-deployment cost.



Finally, monitoring in the edge-cloud environment
is also partially related to our work, but orthogonal
in purpose. Abderrahim et al. [28] advocate the
need for a holistic monitoring services in the context
of edge and fog infrastructures. The authors analyze
the requirements for such services and provide a
classification and qualitative analysis of the major
existing solutions.

The FMonE framework [29] is a particular exam-
ple of a dedicated edge-cloud monitoring service,
which provides a flexible monitoring infrastructure
for the fog computing paradigm. Souza et al. [30]
present an edge-cloud monitoring approach (which
is an extension of the CLAMBS [31] cloud monitor-
ing service) and which, based on monitoring, can
trigger migration of micro-services between edge-
nodes to improve latency or performance, but does
not provide any guarantees.

In general, monitoring operates on a post-fact ba-
sis, with the primary purpose of avoiding problems
going on undetected. Monitoring solutions generally
focus on indicators related to the health of systems
or applications, and trigger typically coarse-grained
corrective actions (restarting applications, starting
or migrating virtual machines, etc). These actions
can often remedy transient problems, or stop cascad-
ing problems from occurring, but monitoring alone
does not provide any execution guarantees.

While our approach shares some technical aspects
with monitoring solutions, and could even make
use of a monitoring solution to gather system- and
application-level health information, it primarily op-
erates at a different conceptual level. The goal of
our approach is to provide probabilistic execution
guarantees, and uses monitoring data to predict ap-
plication performance at probe points in different
deployment scenarios. Enacting a particular deploy-
ment scenario may trigger deployment changes in
multiple managed applications, which is not a simple
corrective action.

7. Conclusion

To summarize, we present an approach to pro-
viding soft real-time guarantees on response time
of microservices deployed in an edge-cloud. Our
approach allows developers to express the desired
guarantees directly in the form of probabilistic re-
quirements (e.g., in 90% of cases the response time
should be within 100 ms). This contrasts with so-
lutions requiring explicit reservations in terms com-
mon for existing cloud platforms, such as CPUs or

18

IOPS, which are disconnected from the developer’s
perspective of application performance.

Our approach relies on a statistical method used
to predict the upper bound of a microservice re-
sponse time (at a given confidence level) when colo-
cated with other microservices. Based on this pre-
diction, an adaptive control loop can manage the
deployment and re-deployment of microservices to
proactively maintain the performance targets.

Because the effects of performance interference
between colocated workloads can be non-linear (es-
pecially when resources are overcommitted) and can
negatively impact the accuracy of the response time
predictions, we limit the operational boundary of
the prediction algorithm to system states in which
the algorithm provides good estimates, which can
be broadly described as non-overcommitted. Con-
sequently, the edge-cloud scheduler controls the ad-
mission and deployment of microservices not only
to provide response time guarantees, but also to
ensure that the managed systems stay within the
operational boundary of the prediction algorithm. It
is important to mention that non-overcommitment
does not present any issue as we primarily consider
microservices with continuous workloads (stream
processing, etc. — as already mentioned in the intro-
duction). While overcommitment makes sense in the
case of microservices with processing bursts (and
longer periods of inactivity between the bursts), it
provides no benefits in our case. Because the work-
load is continuous, overcommitting automatically
implies the inability to meet the timing require-
ments.

An important novelty of our approach (with re-
spect to the state of the art) is that it has minimal
impact on microservice developers. In our approach,
we treat the microservices as black boxes that the
framework knows nothing about—apart from per-
formance requirements expressed over application
probes. The edge-cloud infrastructure automatically
profiles the microservices submitted for deployment
and collects the data needed for the prediction algo-
rithm. Consequently, we do not impose any specific
software architecture (such as partitioning into real-
time tasks) on the developer, nor do we require any
particular programming language to be used. More
importantly though, we do not require the developer
to provide a performance model of the application,
or specify the application resource requiremnts in
terms of CPUs and IOPS, which are disconnected
from his or her perception of application perfor-
mance.



Even though in this paper we do not specifically
focus on networking, in future we plan to include
the knowledge of network topology and network
latencies in the control loop to enable more flexi-
ble distribution of microservices across edge-cloud
nodes.
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