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ABSTRACT As modern software-intensive systems become larger, more complex, and more customizable, 
it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible 
to fully model and predict their behavior in advance, which is a classical requirement of runtime self-
adaptation. To address this problem, we propose their self-adaptation based on a sequence of online 
experiments carried out in a production environment. The key idea is to evaluate each experiment by data 
analysis and determine the next potential experiment via an optimization strategy. The feasibility of the 
approach is illustrated on a use case devoted to online self-adaptation of traffic navigation where Bayesian 
optimization, grid search, and local search are employed as the optimization strategies. Furthermore, the cost 
of the experiments is discussed and three key cost components are examined—time cost, adaptation cost, and 
endurability cost. 

INDEX TERMS experimentation, optimization, self-adaptation

I. INTRODUCTION 
Large software-intensive systems (LSIS) are becoming more 
dynamic, adaptive, and data-driven. An example is a smart 
grid, for which, contrary to the classical power grid, no clear 
models of consumption and production are available. This is 
mostly due to the need of high flexibility in distributed 
energy production and consumption.  

With this in mind, we focus on LSIS that need to change 
their architecture or configuration at runtime in order to 
adapt to changes in their environment. The objective of such 
adaptation is to optimize the LSIS’s functionality with 
respect to a specific goal. Adaptation typically assumes the 
existence of models that describe the behavior of the system 
and its environment and allow for exploring the (potentially 
large) space of adaptation options to select from. 
Nevertheless, a common problem in LSIS is the lack of 
accurate, efficient, and up-to-date models that can be used in 
the process of self-adaptation. For instance, in order to 
optimize the capacity of a highway, a model connecting the 
average speed and traffic density to adaptation actions such 
as setting dynamic speed limits or opening and closing extra 

lanes, would be needed. Typically, this would be a coarse-
grained, empirically constructed model. In this context, it is 
a challenge to tailor such a model to the specifics of a 
particular LSIS and keep it continuously updated in face of 
changes in the environment (consider, e.g., a highway close 
to a city busy with commuters and one with detours in a hilly 
remote area).  

Instead of creating such models, we propose to self-adapt 
LSIS to meet an optimization goal at runtime via automated 
online experiment-driven adaptation (AOEDA). We build on 
large-scale experiments employing A/B testing used by 
many organizations including Microsoft [1], [2], Google [3], 
and Uber [4] to evaluate different functionality variants of 
their systems. AOEDA is a novel approach to optimize a 
system on-the-fly by evaluating variants of system 
parameters settings – system configurations. More general 
than A/B testing, AOEDA (i) is initiated by the system itself 
(not by its operators), and (ii) aims at the dynamic (online) 
identification of an optimal configuration and its activation. 
Similar to A/B testing, AOEDA employs experimentation 
upon production systems with real users, where the cost of 
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experimentation is an important factor, potential negative 
user reactions included (e.g. dropping the use of a system 
service). In particular, we identify three key components of 
experimentation cost: (i) Cost related to the time needed for 
an optimization round of the LSIS in question (time cost); 
(ii) cost of applying a new configuration to the LSIS 
(adaptation cost); (iii) cost related to the user dissatisfaction 
potentially caused by a new configuration (endurability 
cost).   

In this paper, we describe the main ingredients of AOEDA, 
focus on the three essential components of experimentation 
cost, showcase the related trade-offs in the use of different 
optimization strategies, and discuss our insights on the use of 
runtime optimization/adaptation via online experimentation. 

The rest of the paper is organized as follows. Sec. II 
presents the use case that will be used for motivating and 
illustrating AOEDA. Sec. III describes the basic concepts 
and challenges of AOEDA, whilst Sec. IV elaborates on 
three optimization strategies that can be used with AOEDA. 
Sec. V demonstrates the different cost aspects of our 
approach on the use case and Sec. VI discusses key learnings 
from applying AOEDA and recommended best practices. 
Finally, Sec. VII discusses other approaches focusing on cost 
aspects, and the concluding Sec. VIII summarizes the 
contribution. .  

 
II. USE CASE: TRAFFIC NAVIGATION 
As a simple LSIS use case, we consider CrowdNav [5]—a 
navigation service used by cars to help optimize their routing 
from an origin to a destination in a street network. The 
optimization goal is to reduce the average trip time by 
smartly dispensing the street traffic, even though this may 
lead to forcing some cars to take sub-optimal routes.  

The navigation service runs the Dijkstra algorithm to 
determine the routes with the smallest sum of routing 
weights (we could also have used other graph search 
algorithms such as RRT [6]). The weights are assigned to 
streets according to map information (statically) and traffic 
intensity (dynamically). The weight of a street is 
proportional (i) to its length and inversely proportional to the 
maximal speed allowed in it, and (ii) to the average time to 
pass through the street (a proxy for traffic intensity), based 
on data reported by cars.  

CrowdNav features a number of system parameters that 
can be changed at runtime and control the evaluation of 
routing weights. For example, one system parameter controls 
the importance of map information while another one of 
traffic intensity. To set appropriate values of the system 
parameters (configurations), the impact of their particular 
selection on the optimization goal needs to be modeled. 
Notice that such a model would be specific to the situation at 
hand: an appropriate configuration when many cars are in 
operation does not have to work in the case of few cars. 
Similarly, the model would depend on the actual status of the 
street network, day of the week, behavior of drivers, etc. 

To optimize CrowdNav (our production system) 
functionality at runtime, we use, in an iterative way, a series 

of online experiments that yield a proposition of a new 
configuration, which is then applied, and its effect is 
measured by car trip durations and drivers’ convenience.  
This assumes determining the value domain for each system 
parameter and setting an initial configuration (Table 1). The 
default values and ranges for each parameter were set based 
on the experience of performing past experiments with 
CrowdNav [7]. 

For simplicity, we focus in this paper on optimizing 
CrowdNav by tuning only two of its system parameters. The 
first one is “route randomization” which controls the amount 
of noise that is introduced to the routing weight. Its range is 
0 to 0.3; in simple terms, a value of 0.1 means that there is a 
possible 10% increase or decrease of routing weight. Larger 
values lead to more diverse routes for the same origin-
destination pairs, which helps avoid bottlenecks. On the 
other hand, high values may add some less-optimal routes 
due to added noise. The second system parameter is the “data 
freshness threshold” that determines the acceptable level of 
staleness in traffic data. Consider the case of a number of 
cars that need to move in a peak time from an area A (e.g., a 
residential zone) to area B (e.g., downtown). If all of them 
are given the same route, congestion might occur; 
nevertheless, too much randomization could yield several 
suboptimal routes. Similarly, the threshold of data freshness 
influences the efficiency of the routing process.  

CrowdNav is bundled with a microscopic traffic 
simulator (SUMO [8]) that allows simulation of different car 
trips in realistic environments. For instance, to perform the 
demonstration and evaluation in Sec. V, we deployed 500 
cars in the city of Eichstädt in Germany.  

III. AOEDA KEY CONCEPTS 

A. MAIN IDEA 
AOEDA is based on the following key assumptions:  

1. The LSIS features a configuration space (a set of its 
configurations) that can be explored at runtime by 
its adaptation interface. 

2. The LSIS can be adapted online by choosing and 

 
Table 1. CrowdNav parameters. 
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applying a new configuration.  
3. The LSIS provides runtime data on its behavior—

system outputs—which allow quantifying the effect 
of applying a particular configuration. 

4. There is an Adaptation Manager that collects the 
system outputs, processes and analyses them, and 
periodically performs a series (pursuit) of online 
experiments by choosing and applying specific 
configurations to the LSIS with the goal to optimize 
its functionality.  

Figure 1 shows the main idea of AOEDA. Essentially, 
AOEDA follows the principles and phases of MAPE-K loop, 
a classical approach to self-adaptation [9]. Concretely, the 
LSIS features a number of system parameters, including 
those characterizing the context (environment) of LSIS, 
which are continuously monitored and analyzed to trigger 
a pursuit (plan) and finally applied (execute) as the optimal 
configuration found in the pursuit. The inner MAPE-K loop 
in Figure 1 executes an experiment as a pursuit’s step, 
monitors and analyzes its results, and plans the next 
experiment to run in the pursuit. The analysis phase involves 
obtaining multiple readings of system outputs. In a similar 
vein, the outer MAPE-K loop in Figure 1, controls the 
execution of the pursuit; specifically, its termination is 
determined either by meeting an optimization goal or by 
exceeding a predefined number of experiments.  

When the pursuit finishes, the (sub-)optimal 
configuration found is applied to the LSIS (the execute phase 
of the outer loop) and saved in the Knowledge base, so that 
this configuration can be reused if the LSIS resides in the 
same situation in the future.  

In CrowdNav, the system outputs are trip overheads and 
driver complaints. For each trip, the overhead is calculated 
by dividing the actual trip duration by its theoretical duration 
assuming no other traffic is present and cars move always at 
the maximum permitted speed. Practically, trip overheads 
range from 1 to 301. An experiment in CrowdNav applies a 
new configuration and monitors the system outputs. It 
terminates after 5000 samples of trip overhead are collected. 
A pursuit consists of potentially many such experiments and 
is triggered by monitoring a single system (context) 
parameter — the number of cars. Whenever this number 
reaches a certain threshold, a new pursuit is triggered. The 
goal of a pursuit in CrowdNav is to identify a minimum or 
close to minimum median trip overhead. The pursuit ends by 
alternatively (a) meeting the optimization criterion 
“median(trip overhead) < 1.2”, or reaching a configuration 
that cannot be improved any further (local optimum is 
found), (b) reaching the pursuit budget (maximum number 
of experiments).  

B. CHALLENGES 
In essence, AOEDA performs pursuits that change 

                                                
1  Trip overhead of 1 means that its duration was equal to its 
theoretical duration. 

 

configurations at runtime and measure the effect of the 
changes, for different environments or contexts. In this 
setting, a basic challenge is to select the best optimization 
strategy to drive the pursuit. This depends on many factors 
including the nature of system inputs (e.g. discrete or 
continuous), the size and shape of the configuration space, 
the potential necessity to find the global optimum, the time 
budget available for the pursuit, and the tolerance levels of 
users. Clearly, no strategy is optimal in all cases, as also 
indicated by the “no free lunch” theorems for optimization 
[10].  

The above challenge is exacerbated when the comparison 
of the optimization strategies and the selection of the optimal 
one for a certain environment is learned once versus 
continuously. In the latter case, mechanisms have to be in 
place for switching strategies at runtime and assessing their 
effectiveness in an automated way, as discussed in our 
previous work [11].  

Anyhow, an overarching challenge in AOEDA is that all 
its phases have to be performed in a real-world setting, i.e. 
after the system has been deployed to production. This is 
different to the testbeds where optimization algorithms (e.g. 
numeral optimization, genetic algorithms) are typically 
benchmarked [12]–[14] and creates the extra requirement of 
handling the different types of cost components associated 
with AOEDA, described below (Sect. III.C). 

C. EXPERIMENTATION COST 
Compared to other adaptive systems, we argue that costs of 
experimentation need to be considered differently for 
AOEDA. As mentioned before, a pursuit is associated with 
three key components of experimentation cost, which are 
neither system parameters nor system outputs, but a property 

 

   

Figure 1: High-level illustration of AOEDA. 
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of the optimization strategy:  
1. Time cost. This is related to both the size of 

configuration (sub)space to be explored and the 
number of experiments in a pursuit. Obviously, the 
higher the size of configuration space and the number 
of experiments, the higher the time cost.  

2. Adaptation cost. Every time an experiment starts, the 
LSIS is adapted eventually. This cost component is 
proportional to the computational complexity of the 
required adaptation actions. As an example, consider 
applying to CrowdNav new router settings. Here the 
adaptation cost is given by the burn-in time needed to 
ensure that these settings have been picked up by all 
cars.  

3. Endurability cost. This is the cost of running 
configurations which lead to user dissatisfaction [15], 
which we call harmful configurations. Clearly, 
different users will have different sources of 
dissatisfaction: longer trip times, more fuel 
consumption, less driving comfort, etc. The 
probability of inducing endurability cost, as well as 
its magnitude is difficult to predict; controlling the 
magnitude of this cost amounts to controlling the risk 
of online experimentation [7].    

The significance of each experimentation cost component 
depends on a particular LSIS. When optimizing a web 
service, the time cost or adaptation cost do exist but they are 
often not significant. On the contrary, endurability cost is 
important due to potential loss of user engagement. In a 
similar vein, when optimizing a routing request issued by an 
ambulance responding an accident, the time cost is primarily 
important, since the optimization needs to take just few 
seconds, or at most a minute, to be relevant. 

IV. OPTIMIZATION STRATEGIES 
Different optimization methods can be used to drive a pursuit 
in AOEDA, i.e. to select the series of online experiments to 
be performed to optimize the system. The optimization we 
consider takes the form of finding the minimum of a response 
𝑦 = 𝑓(𝑥&, 𝑥(,… , 𝑥*) + 𝜀 where 𝑓 is the (unknown) response 
function, 𝑥&, 𝑥(,… , 𝑥*  are the input parameters (independent 
variables, set specifically in each experiment) and 𝜀 is the 
statistical error representing other sources of variability not 
accounted by 𝑓.  

The parameters 𝑥&, 𝑥(, …, 𝑥* are elements of the domain 
𝑋&, 𝑋(, …, 𝑋* forming a configuration space 𝐶𝑆. The 
response function 	𝑓 with its domain 𝐶𝑆 and the statistical 
error 𝜀 determine the potential values of 𝑦 – a response 
surface 𝑅𝑆. Since 𝑓 is unknown in general, 𝑅𝑆 is typically 
approximated, e.g., by a surrogate model, or even (in discrete 
settings) fragments of it are created on the fly. A variety of 
methods for creating such an approximation are 
known. They are commonly based on carrying out 
experiments. Designing experiments basically means to 
determine for which parts of 𝐶𝑆 the response surface 𝑅𝑆 is 

to be approximated. An experiment involves traversing the 
approximated parts of 𝑅𝑆 (this process is called search) with 
the aim to find a domain point yielding an optimal value of 
𝑦.  

 Some methods specify/design all experiments before the 
pursuit starts; others do so on the fly. Each method has 
different effect on reducing a particular cost component, 
while potentially increasing others. We illustrate this trade-
off by optimizing CrowdNav via the three methods listed 
below. These have been chosen (no only) since each of them 
inherently aims at reducing one out of the three cost 
components.  

1. Grid search over the configuration space (factorial 
design)—mainly reduces adaptation cost; 

2. Sequential model-based optimization (SMBO), 
also referred to as Bayesian optimization— mainly 
reduces time cost; 

3. Local search starting from a predefined 
configuration— mainly reduces endurability cost.   

A. GRID SEARCH 
Grid search systematically goes through all the possible 

configurations of a discretized configuration space CS. It 
starts from the configuration at an edge of CS and changes 
configuration by increasing one parameter 𝑥3value at a time. 
Using design-of-experiments (DoE) terminology [16], this 
method corresponds to full factorial design. Here, all 
experiments (configurations to be tested) are designed 
(specified) a priori. The results of grid search can be 
analyzed with factorial ANOVA to determine which of the 
parameters 𝑥&, 𝑥(,… , 𝑥*or combinations of them affect the 
response. The results can also be used for fitting a first- or 
second-order polynomial model that approximates the 
response surface 𝑅𝑆 [17]. Since grid search always slightly 
modifies a single parameter	𝑥3 , the search only makes small 
moves in the configuration space, resulting likely in low 
adaptation cost.  

B. SMBO 
In each experiment, SMBO builds a surrogate model (e.g. 

Gaussian process, decision tree) of the response surface 𝑅𝑆  
and chooses the next experiment—the next configuration to 
try out [18], [19]. To choose the next experiment, SMBO 
uses an acquisition function that balances exploration with 
exploitation: it tries to find a globally optimal configuration 
with the least number of experiments by exploring less 
visited regions in CS and exploiting the learned knowledge 
by evaluating close-to-known good configurations. Since the 
focus is to converge fast, SMBO inherently reduces the time 
cost of experimentation. However, adaptation and 
endurability costs may be compromised due to jumps in CS.  

C. LOCAL SEARCH 
Local search is a simple method, inspired by Evolutionary 

Operation by Box [20], that aims at finding a better 
configuration (local optimum) in a neighborhood in CS. 
Local search starts from evaluating a starting configuration 
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(current one), tries out all the neighboring configurations and 
moves to the configuration that performs best, and, of course, 
better than the current configuration. If no such neighbor 
exists, the search terminates. The bottom line is that local 
search does not aim at a globally optimal configuration. 
Since it incrementally improves the system output by making 
only small modifications at a time, it does not bring high risk 
of running harmful configurations; so there is a good chance 
that it does not worsen the endurability cost.  

V.  CONCEPT EVALUATION 
The goal of this section is to demonstrate AOEDA and to 
compare the different optimization strategies and their effect 

on the different cost components. In particular, we evaluate 
the applicability of AOEDA in the optimization of the traffic 
navigation use case introduced in Section II. Since we aim at 
showcasing the different cost components, we benefit from 
the flexibility of the simulator bundled with CrowdNav, as 
other self-adaptation approaches did in their evaluations 
[21]–[23]. 

In CrowdNav we simulated random trips of 500 cars in 
the city of Eichstädt, Germany. In case of a high trip 
overhead (higher than 2.5), a driver complaint was issued 
with some probability (we used 50%). The output of an 
experiment was the median of trip overheads of 5000 trips 
and the number of complaints issued in the meantime. Such 

                                  
 
(a) Grid search for 9 values of route randomization and                                      (b) Sequential Model-Based Optimization (SMBO) with 20 iterations. 
      7 values of data freshness threshold.                     

 

 

(c) Local search: The algorithm visits the 4 neighbors of a configuration and moves towards the best performing neighbor.  

 

Figure 2: Comparison of the three pursuit strategies on CrowdNav. Darker areas of the response surface indicate lower median values (better) of trip 
overheads.
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a large number of recorded overheads resulted in a median 
value that was rather stable and did not suffer from 
measurements errors (outliers, etc.). The simulation results 
reported in the rest of this section serve for demonstration of 
the different cost types and informal comparison of the 
pursuit strategies.  

Recall from Sec. II that we consider configuration of two 
parameters: “route randomization” and “data freshness 
threshold”. The latter controls the length of the time window 
for which traffic data is considered relevant in the routing 
process. In Figure 2, the configuration of each experiment 
(represented as a point) along with the median of trip 
overhead per experiment is depicted. In particular, Figure 2.a 
shows the pursuit using the SMBO strategy with Gaussian 
processes as the surrogate model, 3.b using grid search, and 
3.c using local search. For each of these subfigures, the first, 
last, and best configuration are marked in black, white, and 
green, respectively. Furthermore, each pursuit yielded a 
different optimal configuration and value of cost components 
as described below. Recall that a cost component in our case 
is neither a system parameter nor a system output, but a 
property of the optimization strategy.  

Optimal configurations. In the case of both the SMBO and 
grid search, the pursuit stopped when it exhausted its budget 
(20 experiments for SMBO, 63 for grid search), whereas 
local search terminated not being able to find better local 
optimum in neighboring configurations. Among the pursuit 
strategies, grid search yielded the optimal configuration. At 
the same time, SMBO yielded the second-best optimal 
configuration (a local optimum), whereas local search was 
less efficient. Although the three strategies yielded different 
results, all of them have matched our intuition that some 
route randomization boosts the routing efficiency, whereas 
more randomization hinders it. 

Time cost. SMBO is faster in finding a good configuration 
than grid search: with a pursuit budget of 20 experiments, 
SMBO reports a local optimum that is close to the best-
known optimum reported by grid search. However, grid 
search needs a much higher pursuit budget of 63 
experiments. Finally, local search needs a low pursuit budget 
of 13 experiments.  

Adaptation cost. On the other side, grid search and local 
search carry out only small changes in CS (low adaptation 
cost), whereas SMBO occasionally exhibits big jumps in the 
configuration space. Given that  

𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡 = = 𝑐𝑜𝑠𝑡	𝑜𝑓𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡	
CDECF3GC*HI

 

and the cost of a single experiment in CrowdNav is always a 
small constant, the big jumps in CS do not lead to higher 
adaptation cost in case of SMBO.    

Endurability cost. A harmful configuration leading to 
higher trip durations will also yield more user complaints—
and thus increase the endurability cost. In case of SMBO, 
this can happen due to the fact that the pursuit will explore 

less visited regions of CS.  We measured the number of 
issued complaints and found out that in the case of grid 
search 15,405 complaints were reported in total (average 
complaints-to-trips ratio: 4.89%), compared to only 4,176 
complaints in total in case of SMBO (average complaints-to-
trips ratio: 4.17%). This is of course related to the less 
experiments (20) performed for SMBO compared to grid 
search (63). When using local search by starting from a 
configuration of “route randomization” of 0.1 and “data 
freshness threshold” of 400 (Figure 2.c.), 3,226 complaints 
were reported in total (average complaints-to-trips ratio: 
4.61%). Although the total number of complaints was less 
than in the case of SMBO, we note that the efficiency of local 
search highly depends on the initial configuration. A main 
goal of the evaluation was to illustrate the trade-offs between 
different cost factors for production settings, where 
adaptation cost and endurability cost can be very significant. 

In adaptive systems research (including our  earlier work), 
extensive evaluations of the effect of the different strategies 
on the optimization objective and the cost components 
confirm the above observation. For instance, in [11] we 
compared the effectiveness of Bayesian optimization with 
two variants of genetic algorithms on optimizing CrowdNav 
at runtime. In [7], we combined Bayesian optimization with 
factorial design (grid search), A/B testing and binomial 
testing (for detecting harmful configurations). In [24], we 
performed experiments in a microservice-based production 
environment to collect data with the goal of continuous 
optimizing services deployment in an edge-cloud scenario. 
Finally, in [25] we used Bayesian optimization in 
combination with reinforcement learning to optimize 
machine learning pipelines.  

VI. DISCUSSION OF KEY LEARNINGS 
In this section, we summarize the lessons we have learned 
when applying AOEDA to CrowdNav and discuss our 
recommendations when applying AOEDA in general. 

A. LESSONS LEARNED 

Trade-offs between different pursuits and cost 
components need to be considered for each case. Local 
search can be good in reducing endurability cost if a good 
starting point is chosen and a good or best local optimum can 
be found. Grid search is exhaustive and slow, but has 
minimal cost for adaptation in each step.  Both  
Grid and local search work best if the configuration space is 
continuous, without sharp peaks. SMBO explores the RS 
more widely and can detect more local optima (and the 
global optimum at best). Still, any application of SMBO 
needs to consider all the three cost components, and 
especially the endurability cost as it makes bigger jumps in 
the configuration space. 

Experimentation cost depends on the application. As we 
showcased in Sec. IIIC, one needs to account for the different 
cost components associated with the choice of a pursuit 
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strategy. However, cost is also associated with the target 
LSIS itself: For instance, applying AOEDA in optimizing a 
car-sharing system by modifying the position of some of the 
available cars will most probably have higher adaptation cost 
than changing the values of CrowdNav parameters, since 
moving cars around comes with additional effort. A good 
idea before starting to optimize an LSIS is to first estimate 
the size of all cost components. Time cost can be estimated 
by looking at the variance of system outputs, with higher 
variance pointing to longer experiments and higher time cost. 
Adaptation cost may be estimated offline by calculating the 
cost of each potential experiment. Finally, endurability cost 
is hard to estimate offline; small-scale pre-experiments 
should be used here to gauge the amount of endurability cost 
that can be expected.         

B. RECOMMENDATIONS 

Harmful experiments should be aborted early. Time and 
endurability costs’ evaluation can be used not only for 
assessing different optimization strategies, but also for 
aborting an experiment if it incurs a high time and/or 
endurability cost. This is analogous to the abortion criteria 
used in A/B testing for stopping an online experiment before 
many users are exposed to a harmful configuration [26].  

Large configurations spaces should be pruned offline. In 
order to reduce the time cost of a pursuit strategy, CS may 
have to be pruned offline to reduce the number or range of 
parameters considered in the pursuit. One way to achieve this 
is to learn (offline) which parameters have the strongest 
effect on the system output and use them to form the CS 
considered in the pursuit [22].  

Humans in the loop. Ideally, AOEDA should be performed 
in complete autonomy in which continuous monitoring of the 
LSIS is used for triggering a pursuit when the current system 
configuration is considered suboptimal with respect to the 
runtime situation (e.g. high traffic in the city). Nevertheless, 
when automated pursuit triggering is difficult to achieve, 
humans can be in the loop to possibly trigger new pursuits. 
Indeed, automating the triggering of new pursuits is an 
important subject of our future work.  

VII. COST ASPECTS IN SELF-ADAPTIVE AND ONLINE 
EXPERIMENTATION APPROACHES 
Our new approach for online experimentation integrates 
adaptation, search and optimization, and experimentation for 
systems with a larger configuration space, where no suitable 
model of the system and environment exists. As there is a 
vast body of related work, we compare AOEDA to different 
related approaches in detail below. 

The main goal of self-adaptive systems is adaptation in 
response to changes in their internal state and their operating 
environment [27], [28]. Considerable research efforts focus 
on finding the most suitable new configuration [27], [29] 
based on a model (e.g. a Markov decision process). In 
AOEDA, we use adaptation to explore the configuration 

space by experiments without such a model. Thus, we have 
to consider the cost of several adaptation steps, which leads 
to our novel cost classification. The notion of cost that 
appears in the self-adaptive literature mainly focuses on the 
utility or suitability of a single target configuration, 
compared to others in a model. Also, other works consider 
cost in the context of monitoring, e.g. [30].  

In the area of adaptive systems, approaches exist that 
employ online planning to find the best adaptation actions at 
runtime [22], [31]. A number of algorithms have been 
employed to this end: Hill climbing has been used to 
implement a search-based feedback loop [32]; genetic 
programming and genetic algorithms (including NSGA-II 
and novelty search) have been advocated as part of the vision 
of genetic improvement for adaptive software engineering 
[33] and used in determining optimal configurations [11], 
[23], [34]–[36]; finally, multi-armed bandits [37] and 
Bayesian optimization [7], [11] have been employed for 
online planning in self-adaptive systems.  

Although the emphasis in these works is on the quality of 
the found solution, the time needed to find such solution is 
also evaluated and reported, as, e.g., in [21], [23], [36]. 
Elapsed time is indeed related to our time cost; however, we 
emphasize that in our approach, runtime experiments are 
performed with the system itself, not with a model of it. In 
this setting, model-less approaches using multi-criteria 
optimization have also reported time costs as a significant 
factor, but do not mention adaptation or endurability costs 
[11]. For specific applications of adaptive systems, the 
adaptation cost is considered, e.g. in [38], [39] the effort to 
start up virtual machines is relevant for adaptation. 

In the recent literature on online experimentation [1], the 
focus is on improving connected software applications. Here, 
endurability cost is emphasized over adaptation or time cost, 
since there is a high risk in user exposure to suboptimal 
functionality [40], [41]. Online experimentation is a 
generalization of A/B testing [26] and, in this line, typically 
a discrete set of options is considered, not the exploration of 
a search space with possibly continuous variables. 

In summary, a main contribution of our new AOEDA 
approach is the cost classification suitable for experiment-
driven adaptation in AOEDA. We show how to use different 
multi-criteria optimization strategies in this cost model, 
including incremental optimization based on Gaussian 
Processes. 

VIII. CONCLUSIONS 
In this paper, we presented our new approach for automated 
online experiment-driven adaptation (AOEDA). This 
integrates concepts of optimization, experimentation and 
adaptation for systems with a larger configuration space, 
where no suitable model of the system and environment 
exists. To overcome the problem of missing model, we used 
online experimentation as in A/B testing, but for larger 
configuration spaces where A/B testing does not scale. 
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Furthermore, we argued that cost needs to be considered 
differently for AOEDA. In this line, we presented a novel 
classification of the different cost factors which are most 
relevant for AOEDA, and showed the connection to related 
approaches in self-adaptive systems and online 
experimentation. Based on a use case of traffic management, 
we compared different options for controlling the online 
experiments with different cost focus and drew several 
learnings for AOEDA.  

ACKNOWLEDGMENT 
The research leading to these results has received funding 
from the ECSEL Joint Undertaking (JU) under grant 
agreement No 783221. 

REFERENCES 
[1] R. Kohavi et al., “Online experimentation at Microsoft,” in Data 

Mining Case Studies and Practice Prize III, 2009, vol. 11, 
Accessed: Jun. 21, 2017. [Online]. Available: 
http://www.appliedaisystems.com/papers/DMCS2009_Workshopp
roceedings4.pdf#page=11. 

[2] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A. 
Fabijan, “The Anatomy of a Large-Scale Experimentation 
Platform,” in Proc. of ICSA 2018, Apr. 2018, pp. 1–109. 

[3] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping 
experiment infrastructure: More, better, faster experimentation,” in 
Proc. of SigKDD 2010, ACM, 2010, pp. 17–26, Accessed: Jun. 13, 
2017. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=1835810. 

[4] “Uber Experimentation Platform,” Nov. 01, 2019. 
https://eng.uber.com/tag/experimentation/. 

[5] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, “Self-
Adaptation Based on Big Data Analytics: A Model Problem and 
Tool,” in Proc. of SEAMS 2017, IEEE, May 2017, pp. 102–108. 

[6] Steven LaValle, “Rapidly-exploring random trees: A new tool for 
path planning,” Computer Science Dept., Iowa State University, 
98–11, Oct. 1998. Accessed: Feb. 15, 2021. [Online]. Available: 
http://cs.brown.edu/courses/cs1951r/assignments/motionplanning/r
rtpaper.pdf. 

[7] I. Gerostathopoulos, C. Prehofer, and T. Bures, “Adapting a 
System with Noisy Outputs with Statistical Guarantees,” in Proc. 
of SEAMS 2018, 2018, pp. 58–68. 

[8] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent 
Development and Applications of SUMO - Simulation of Urban 
MObility,” Int. J. Adv. Syst. Meas., vol. 5, no. 3 & 4, pp. 128–138, 
Dec. 2012. 

[9] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” 
Computer, vol. 36, no. 1, pp. 41–50, 2003. 

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for 
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–
82, Apr. 1997, doi: 10.1109/4235.585893. 

[11] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel, 
“Planning as Optimization: Dynamically Discovering Optimal 
Configurations for Runtime Situations,” in 2019 IEEE 13th 
International Conference on Self-Adaptive and Self-Organizing 
Systems (SASO), Jun. 2019, pp. 1–10, doi: 
10.1109/SASO.2019.00010. 

[12] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, “BUNGEE: 
An Elasticity Benchmark for Self-Adaptive IaaS Cloud 
Environments,” in Proceedings of the 2015 IEEE/ACM 10th 
International Symposium on Software Engineering for Adaptive 
and Self-Managing Systems, USA, May 2015, pp. 46–56, doi: 
10.1109/SEAMS.2015.23. 

[13] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang, 
“mlrMBO: A Modular Framework for Model-Based Optimization 
of Expensive Black-Box Functions,” ArXiv Prepr. 
ArXiv170303373, 2017. 

[14] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, “Algorithm 
selection based on exploratory landscape analysis and cost-
sensitive learning,” in Proceedings of the fourteenth international 
conference on Genetic and evolutionary computation conference - 
GECCO ’12, Philadelphia, Pennsylvania, USA, 2012, p. 313, doi: 
10.1145/2330163.2330209. 

[15] I. Gerostathopoulos, C. Prehofer, L. Bulej, T. Bures, V. Horky, and 
P. Tuma, “Cost-Aware Stage-Based Experimentation: Challenges 
and Emerging Results,” in Proc. of ICSA 2018, 2018, pp. 72–75. 

[16] S. Ghosh and C. R. Rao, Eds., Handbook of Statistics 13: Design 
and Analysis of Experiments, 1 edition. Amsterdam: North-
Holland, 1996. 

[17] D. Baş and İ. H. Boyacı, “Modeling and optimization I: Usability 
of response surface methodology,” J. Food Eng., vol. 78, no. 3, pp. 
836–845, Feb. 2007, doi: 10.1016/j.jfoodeng.2005.11.024. 

[18] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global 
Optimization of Expensive Black-Box Functions,” J. Glob. Optim., 
vol. 13, no. 4, pp. 455–492, Dec. 1998, doi: 
10.1023/A:1008306431147. 

[19] P. I. Frazier, “A Tutorial on Bayesian Optimization,” 
ArXiv180702811 Cs Math Stat, Jul. 2018, Accessed: May 19, 
2019. [Online]. Available: http://arxiv.org/abs/1807.02811. 

[20] G. E. P. Box and N. R. Draper, Evolutionary Operation: A 
Statistical Method for Process Improvement, Y First printing 
edition. New York: Wiley-Interscience, 1998. 

[21] T. Chen, K. Li, R. Bahsoon, and X. Yao, “FEMOSAA: Feature-
Guided and Knee-Driven Multi-Objective Optimization for Self-
Adaptive Software,” ACM Trans. Softw. Eng. Methodol., vol. 27, 
no. 2, pp. 1–50, Jul. 2018, doi: 10.1145/3204459. 

[22] P. Jamshidi, J. Cámara, B. Schmerl, C. Kästner, and D. Garlan, 
“Machine learning meets quantitative planning: enabling self-
adaptation in autonomous robots,” in Proc. of SEAMS 2019, May 
2019, pp. 39–50, Accessed: Sep. 13, 2019. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=3341527.3341534. 

[23] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues, 
“Managing uncertainty in self-adaptive systems with plan reuse 
and stochastic search,” in Proceedings of the 13th International 
Conference on Software Engineering for Adaptive and Self-
Managing Systems  - SEAMS ’18, Gothenburg, Sweden, 2018, pp. 
40–50, doi: 10.1145/3194133.3194145. 

[24] L. Bulej et al., “Managing latency in edge–cloud environment,” J. 
Syst. Softw., vol. 172, p. 110872, Feb. 2021, doi: 
10.1016/j.jss.2020.110872. 

[25] X. Sun, J. Lin, and B. Bischl, “ReinBo: Machine Learning Pipeline 
Conditional Hierarchy Search and Configuration with Bayesian 
Optimization Embedded Reinforcement Learning,” in Machine 
Learning and Knowledge Discovery in Databases, Cham, 2020, 
pp. 68–84, doi: 10.1007/978-3-030-43823-4_7. 

[26] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, 
“Controlled experiments on the web: survey and practical guide,” 
Data Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, Feb. 2009, 
doi: 10.1007/s10618-008-0114-1. 

[27] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, 
“A survey on engineering approaches for self-adaptive systems,” 
Pervasive Mob. Comput., vol. 17, pp. 184–206, Feb. 2015, doi: 
10.1016/j.pmcj.2014.09.009. 

[28] B. Cheng et al., “Software Engineering for Self-Adaptive Systems: 
A Research Roadmap,” in Software Engineering for Self-Adaptive 
Systems, Springer Berlin Heidelberg., 2009, pp. 1–26. 

[29] K. Angelopoulos, A. V. Papadopoulos, and J. Mylopoulos, 
“Adaptive predictive control for software systems,” in Proceedings 
of the 1st International Workshop on Control Theory for Software 
Engineering, New York, NY, USA, Aug. 2015, pp. 17–21, doi: 
10.1145/2804337.2804340. 

[30] E. Zavala, “Towards Adaptive Monitoring Services for Self-
Adaptive Software Systems,” in Service-Oriented Computing – 
ICSOC 2017 Workshops, Cham, 2018, pp. 357–362, doi: 
10.1007/978-3-319-91764-1_31. 

[31] T. Zhao, “The Generation and Evolution of Adaptation Rules in 
Requirements Driven Self-Adaptive Systems,” in 2016 IEEE 24th 
International Requirements Engineering Conference (RE), Sep. 
2016, pp. 456–461, doi: 10.1109/RE.2016.18. 



 

VOLUME XX, 2017  9 

[32] P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based 
adaptive systems: a quantitative approach,” in Proceedings of the 
9th International Symposium on Software Engineering for 
Adaptive and Self-Managing Systems, 2014, pp. 7–16. 

[33] M. Harman et al., “Genetic improvement for adaptive software 
engineering (keynote),” in Proceedings of the 9th International 
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Hyderabad, India, Jun. 2014, pp. 1–4, doi: 
10.1145/2593929.2600116. 

[34] Z. Coker, D. Garlan, and C. L. Goues, “SASS: Self-Adaptation 
Using Stochastic Search,” in Proceedings of the 2015 IEEE/ACM 
10th International Symposium on Software Engineering for 
Adaptive and Self-Managing Systems, USA, May 2015, pp. 168–
174, doi: 10.1109/SEAMS.2015.16. 

[35] G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time adaptation of 
mobile applications using genetic algorithms,” in 2013 8th 
International Symposium on Software Engineering for Adaptive 
and Self-Managing Systems (SEAMS), May 2013, pp. 73–82, doi: 
10.1109/SEAMS.2013.6595494. 

[36] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, C. Arora, and 
F. Zimmer, “Dynamic Adaptation of Software-defined Networks 
for IoT Systems: A Search-based Approach,” SEAMS 2020, p. 12, 
2020. 

[37] B. Porter and R. R. Filho, “Distributed Emergent Software: 
Assembling, Perceiving and Learning Systems at Scale,” in SASO 
2019, 2019, p. 10. 

[38] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. 
Jiang, “Power and Performance Management of Virtualized 
Computing Environments Via Lookahead Control,” in 2008 
International Conference on Autonomic Computing, Jun. 2008, pp. 
3–12, doi: 10.1109/ICAC.2008.31. 

[39] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, “Dynamic Service 
Placement in Geographically Distributed Clouds,” in 2012 IEEE 
32nd International Conference on Distributed Computing Systems, 
Jun. 2012, pp. 526–535, doi: 10.1109/ICDCS.2012.74. 

[40] R. Kohavi, D. Tang, and Y. Xu, Trustworthy Online Controlled 
Experiments: A Practical Guide to A/B Testing. Cambridge, 
United Kingdom ; New York, NY: Cambridge University Press, 
2020. 

[41] Y. Xu, W. Duan, and S. Huang, “SQR: Balancing Speed, Quality 
and Risk in Online Experiments,” in Proceedings of the 24th ACM 
SIGKDD International Conference on Knowledge Discovery & 
Data Mining, New York, NY, USA, Jul. 2018, pp. 895–904, doi: 
10.1145/3219819.3219875. 

 
ILIAS GEROSTATHOPOULOS is an Assistant 
Professor of Computer Science at Vrije 
Universiteit Amsterdam, Netherlands. He 
obtained a Ph.D. in Computer Science from the 
Department of Distributed and Dependable 
Systems, Faculty of Mathematics and Physics, 
Charles University in Prague. He has spent time as 
a postdoctoral researcher in the Department of 
Informatics at the Technical University of 

Munich. His research focuses on software engineering, software 
architecture, and self-adaptive systems. 
 
 

FRANTIŠEK PLÁŠIL is professor of software 
engineering in the Department of Distributed and 
Dependable Systems (D3S). Charles University, 
Prague. In his research, he focuses on component-
based software architectures, and also on allocation 
of formal methods in software systems. He has led 
several D3S research teams in a number of research 
projects such as ITEA OSMOSE, ITEA OSIRIS, 
EU FP7 Q-ImPrESS, and ASCENS. He co-authored 

over 100 refereed articles in international journals and proceedings of 
international conferences, and also served on the program committees of 
numerous international conferences, and editorial boards of several 
international journals. In the course of his carrier, he has had visiting 

positions in US at the University of Denver, Wayne State University, 
University of New Hampshire, and in Austria at the University of Linz. 
 

CHRISTIAN PREHOFER holds a MS degree 
from the University of Illinois at Urbana-
Champaign and obtained his Ph.D. and habilitation 
in computer science from TU München in 1995 
and 2000. Currently, he is director at DENSO 
Germany and lecturer at TU München. Before this, 
was leading research groups at fortiss and 
Fraunhofer. He also was acting as professor in 

Computer Science at LMU München and Chang’an University. Before 
2009, he held different management and research positions in the mobile 
communication industry. He is author of more than 150 publications and 34 
granted patents. 
 

 
JANEK THOMAS is group leader of the 
Fraunhofer IIS group AutoML & XAI funded by 
the Ada Lovelace Center. The group is closely 
connected to the Working Group Computational 
Statistics as well as the Chair of Database Systems 
and Data Mining of Ludwig Maximilian 
University (LMU) of Munich. He finished his PhD 
at the Working Group Computational Statistics of 

LMU in April 2019 focusing on Automated Machine Learning and Gradient 
Boosting. During his PhD he did research internships at the Microsoft Cloud 
and Information Services Lab and H2O.ai. 
 
 

 BERND BISCHL is Professor for Statistical 
Learning and Data Science at the Department of 
Statistics at the Ludwig Maximilian University of 
Munich. He obtained his PhD in 2013 from the 
Department of Statistics at TU Dortmund, Germany. 
He works in data science, machine learning and 
computational statistics. 
 
 
 
 

  


