

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Automated Online Experiment-Driven
Adaptation – Mechanics and Cost Aspects
Ilias Gerostathopoulos1, Frantisek Plasil2, Christian Prehofer3, Janek Thomas4, Bernd
Bischl4
1Vrije Universiteit Amsterdam, Amsterdam, Netherlands
2Charles University in Prague, Prague, Czech Republic
3DENSO Automotive Germany, Munich, Germany and Technical University of Munich, Munich, Germany
4Ludwig Maximilian University of Munich, Munich, Germany

Corresponding author: Ilias Gerostathopoulos (e-mail: i.g.gerostathopoulos@vu.nl).

The work has been partially supported by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. This work was
supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications
(ADA-Center) within the framework of “BAYERN DIGITAL II”

ABSTRACT As modern software-intensive systems become larger, more complex, and more customizable,
it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible
to fully model and predict their behavior in advance, which is a classical requirement of runtime self-
adaptation. To address this problem, we propose their self-adaptation based on a sequence of online
experiments carried out in a production environment. The key idea is to evaluate each experiment by data
analysis and determine the next potential experiment via an optimization strategy. The feasibility of the
approach is illustrated on a use case devoted to online self-adaptation of traffic navigation where Bayesian
optimization, grid search, and local search are employed as the optimization strategies. Furthermore, the cost
of the experiments is discussed and three key cost components are examined—time cost, adaptation cost, and
endurability cost.

INDEX TERMS experimentation, optimization, self-adaptation

I. INTRODUCTION
Large software-intensive systems (LSIS) are becoming more
dynamic, adaptive, and data-driven. An example is a smart
grid, for which, contrary to the classical power grid, no clear
models of consumption and production are available. This is
mostly due to the need of high flexibility in distributed
energy production and consumption.

With this in mind, we focus on LSIS that need to change
their architecture or configuration at runtime in order to
adapt to changes in their environment. The objective of such
adaptation is to optimize the LSIS’s functionality with
respect to a specific goal. Adaptation typically assumes the
existence of models that describe the behavior of the system
and its environment and allow for exploring the (potentially
large) space of adaptation options to select from.
Nevertheless, a common problem in LSIS is the lack of
accurate, efficient, and up-to-date models that can be used in
the process of self-adaptation. For instance, in order to
optimize the capacity of a highway, a model connecting the
average speed and traffic density to adaptation actions such
as setting dynamic speed limits or opening and closing extra

lanes, would be needed. Typically, this would be a coarse-
grained, empirically constructed model. In this context, it is
a challenge to tailor such a model to the specifics of a
particular LSIS and keep it continuously updated in face of
changes in the environment (consider, e.g., a highway close
to a city busy with commuters and one with detours in a hilly
remote area).

Instead of creating such models, we propose to self-adapt
LSIS to meet an optimization goal at runtime via automated
online experiment-driven adaptation (AOEDA). We build on
large-scale experiments employing A/B testing used by
many organizations including Microsoft [1], [2], Google [3],
and Uber [4] to evaluate different functionality variants of
their systems. AOEDA is a novel approach to optimize a
system on-the-fly by evaluating variants of system
parameters settings – system configurations. More general
than A/B testing, AOEDA (i) is initiated by the system itself
(not by its operators), and (ii) aims at the dynamic (online)
identification of an optimal configuration and its activation.
Similar to A/B testing, AOEDA employs experimentation
upon production systems with real users, where the cost of

VOLUME XX, 2017 2

experimentation is an important factor, potential negative
user reactions included (e.g. dropping the use of a system
service). In particular, we identify three key components of
experimentation cost: (i) Cost related to the time needed for
an optimization round of the LSIS in question (time cost);
(ii) cost of applying a new configuration to the LSIS
(adaptation cost); (iii) cost related to the user dissatisfaction
potentially caused by a new configuration (endurability
cost).

In this paper, we describe the main ingredients of AOEDA,
focus on the three essential components of experimentation
cost, showcase the related trade-offs in the use of different
optimization strategies, and discuss our insights on the use of
runtime optimization/adaptation via online experimentation.

The rest of the paper is organized as follows. Sec. II
presents the use case that will be used for motivating and
illustrating AOEDA. Sec. III describes the basic concepts
and challenges of AOEDA, whilst Sec. IV elaborates on
three optimization strategies that can be used with AOEDA.
Sec. V demonstrates the different cost aspects of our
approach on the use case and Sec. VI discusses key learnings
from applying AOEDA and recommended best practices.
Finally, Sec. VII discusses other approaches focusing on cost
aspects, and the concluding Sec. VIII summarizes the
contribution. .

II. USE CASE: TRAFFIC NAVIGATION
As a simple LSIS use case, we consider CrowdNav [5]—a
navigation service used by cars to help optimize their routing
from an origin to a destination in a street network. The
optimization goal is to reduce the average trip time by
smartly dispensing the street traffic, even though this may
lead to forcing some cars to take sub-optimal routes.

The navigation service runs the Dijkstra algorithm to
determine the routes with the smallest sum of routing
weights (we could also have used other graph search
algorithms such as RRT [6]). The weights are assigned to
streets according to map information (statically) and traffic
intensity (dynamically). The weight of a street is
proportional (i) to its length and inversely proportional to the
maximal speed allowed in it, and (ii) to the average time to
pass through the street (a proxy for traffic intensity), based
on data reported by cars.

CrowdNav features a number of system parameters that
can be changed at runtime and control the evaluation of
routing weights. For example, one system parameter controls
the importance of map information while another one of
traffic intensity. To set appropriate values of the system
parameters (configurations), the impact of their particular
selection on the optimization goal needs to be modeled.
Notice that such a model would be specific to the situation at
hand: an appropriate configuration when many cars are in
operation does not have to work in the case of few cars.
Similarly, the model would depend on the actual status of the
street network, day of the week, behavior of drivers, etc.

To optimize CrowdNav (our production system)
functionality at runtime, we use, in an iterative way, a series

of online experiments that yield a proposition of a new
configuration, which is then applied, and its effect is
measured by car trip durations and drivers’ convenience.
This assumes determining the value domain for each system
parameter and setting an initial configuration (Table 1). The
default values and ranges for each parameter were set based
on the experience of performing past experiments with
CrowdNav [7].

For simplicity, we focus in this paper on optimizing
CrowdNav by tuning only two of its system parameters. The
first one is “route randomization” which controls the amount
of noise that is introduced to the routing weight. Its range is
0 to 0.3; in simple terms, a value of 0.1 means that there is a
possible 10% increase or decrease of routing weight. Larger
values lead to more diverse routes for the same origin-
destination pairs, which helps avoid bottlenecks. On the
other hand, high values may add some less-optimal routes
due to added noise. The second system parameter is the “data
freshness threshold” that determines the acceptable level of
staleness in traffic data. Consider the case of a number of
cars that need to move in a peak time from an area A (e.g., a
residential zone) to area B (e.g., downtown). If all of them
are given the same route, congestion might occur;
nevertheless, too much randomization could yield several
suboptimal routes. Similarly, the threshold of data freshness
influences the efficiency of the routing process.

CrowdNav is bundled with a microscopic traffic
simulator (SUMO [8]) that allows simulation of different car
trips in realistic environments. For instance, to perform the
demonstration and evaluation in Sec. V, we deployed 500
cars in the city of Eichstädt in Germany.

III. AOEDA KEY CONCEPTS

A. MAIN IDEA
AOEDA is based on the following key assumptions:

1. The LSIS features a configuration space (a set of its
configurations) that can be explored at runtime by
its adaptation interface.

2. The LSIS can be adapted online by choosing and

Table 1. CrowdNav parameters.

VOLUME XX, 2017 3

applying a new configuration.
3. The LSIS provides runtime data on its behavior—

system outputs—which allow quantifying the effect
of applying a particular configuration.

4. There is an Adaptation Manager that collects the
system outputs, processes and analyses them, and
periodically performs a series (pursuit) of online
experiments by choosing and applying specific
configurations to the LSIS with the goal to optimize
its functionality.

Figure 1 shows the main idea of AOEDA. Essentially,
AOEDA follows the principles and phases of MAPE-K loop,
a classical approach to self-adaptation [9]. Concretely, the
LSIS features a number of system parameters, including
those characterizing the context (environment) of LSIS,
which are continuously monitored and analyzed to trigger
a pursuit (plan) and finally applied (execute) as the optimal
configuration found in the pursuit. The inner MAPE-K loop
in Figure 1 executes an experiment as a pursuit’s step,
monitors and analyzes its results, and plans the next
experiment to run in the pursuit. The analysis phase involves
obtaining multiple readings of system outputs. In a similar
vein, the outer MAPE-K loop in Figure 1, controls the
execution of the pursuit; specifically, its termination is
determined either by meeting an optimization goal or by
exceeding a predefined number of experiments.

When the pursuit finishes, the (sub-)optimal
configuration found is applied to the LSIS (the execute phase
of the outer loop) and saved in the Knowledge base, so that
this configuration can be reused if the LSIS resides in the
same situation in the future.

In CrowdNav, the system outputs are trip overheads and
driver complaints. For each trip, the overhead is calculated
by dividing the actual trip duration by its theoretical duration
assuming no other traffic is present and cars move always at
the maximum permitted speed. Practically, trip overheads
range from 1 to 301. An experiment in CrowdNav applies a
new configuration and monitors the system outputs. It
terminates after 5000 samples of trip overhead are collected.
A pursuit consists of potentially many such experiments and
is triggered by monitoring a single system (context)
parameter — the number of cars. Whenever this number
reaches a certain threshold, a new pursuit is triggered. The
goal of a pursuit in CrowdNav is to identify a minimum or
close to minimum median trip overhead. The pursuit ends by
alternatively (a) meeting the optimization criterion
“median(trip overhead) < 1.2”, or reaching a configuration
that cannot be improved any further (local optimum is
found), (b) reaching the pursuit budget (maximum number
of experiments).

B. CHALLENGES
In essence, AOEDA performs pursuits that change

1 Trip overhead of 1 means that its duration was equal to its
theoretical duration.

configurations at runtime and measure the effect of the
changes, for different environments or contexts. In this
setting, a basic challenge is to select the best optimization
strategy to drive the pursuit. This depends on many factors
including the nature of system inputs (e.g. discrete or
continuous), the size and shape of the configuration space,
the potential necessity to find the global optimum, the time
budget available for the pursuit, and the tolerance levels of
users. Clearly, no strategy is optimal in all cases, as also
indicated by the “no free lunch” theorems for optimization
[10].

The above challenge is exacerbated when the comparison
of the optimization strategies and the selection of the optimal
one for a certain environment is learned once versus
continuously. In the latter case, mechanisms have to be in
place for switching strategies at runtime and assessing their
effectiveness in an automated way, as discussed in our
previous work [11].

Anyhow, an overarching challenge in AOEDA is that all
its phases have to be performed in a real-world setting, i.e.
after the system has been deployed to production. This is
different to the testbeds where optimization algorithms (e.g.
numeral optimization, genetic algorithms) are typically
benchmarked [12]–[14] and creates the extra requirement of
handling the different types of cost components associated
with AOEDA, described below (Sect. III.C).

C. EXPERIMENTATION COST
Compared to other adaptive systems, we argue that costs of
experimentation need to be considered differently for
AOEDA. As mentioned before, a pursuit is associated with
three key components of experimentation cost, which are
neither system parameters nor system outputs, but a property

Figure 1: High-level illustration of AOEDA.

VOLUME XX, 2017 4

of the optimization strategy:
1. Time cost. This is related to both the size of

configuration (sub)space to be explored and the
number of experiments in a pursuit. Obviously, the
higher the size of configuration space and the number
of experiments, the higher the time cost.

2. Adaptation cost. Every time an experiment starts, the
LSIS is adapted eventually. This cost component is
proportional to the computational complexity of the
required adaptation actions. As an example, consider
applying to CrowdNav new router settings. Here the
adaptation cost is given by the burn-in time needed to
ensure that these settings have been picked up by all
cars.

3. Endurability cost. This is the cost of running
configurations which lead to user dissatisfaction [15],
which we call harmful configurations. Clearly,
different users will have different sources of
dissatisfaction: longer trip times, more fuel
consumption, less driving comfort, etc. The
probability of inducing endurability cost, as well as
its magnitude is difficult to predict; controlling the
magnitude of this cost amounts to controlling the risk
of online experimentation [7].

The significance of each experimentation cost component
depends on a particular LSIS. When optimizing a web
service, the time cost or adaptation cost do exist but they are
often not significant. On the contrary, endurability cost is
important due to potential loss of user engagement. In a
similar vein, when optimizing a routing request issued by an
ambulance responding an accident, the time cost is primarily
important, since the optimization needs to take just few
seconds, or at most a minute, to be relevant.

IV. OPTIMIZATION STRATEGIES
Different optimization methods can be used to drive a pursuit
in AOEDA, i.e. to select the series of online experiments to
be performed to optimize the system. The optimization we
consider takes the form of finding the minimum of a response
𝑦 = 𝑓(𝑥&, 𝑥(,… , 𝑥*) + 𝜀 where 𝑓 is the (unknown) response
function, 𝑥&, 𝑥(,… , 𝑥* are the input parameters (independent
variables, set specifically in each experiment) and 𝜀 is the
statistical error representing other sources of variability not
accounted by 𝑓.

The parameters 𝑥&, 𝑥(, …, 𝑥* are elements of the domain
𝑋&, 𝑋(, …, 𝑋* forming a configuration space 𝐶𝑆. The
response function 	𝑓 with its domain 𝐶𝑆 and the statistical
error 𝜀 determine the potential values of 𝑦 – a response
surface 𝑅𝑆. Since 𝑓 is unknown in general, 𝑅𝑆 is typically
approximated, e.g., by a surrogate model, or even (in discrete
settings) fragments of it are created on the fly. A variety of
methods for creating such an approximation are
known. They are commonly based on carrying out
experiments. Designing experiments basically means to
determine for which parts of 𝐶𝑆 the response surface 𝑅𝑆 is

to be approximated. An experiment involves traversing the
approximated parts of 𝑅𝑆 (this process is called search) with
the aim to find a domain point yielding an optimal value of
𝑦.

 Some methods specify/design all experiments before the
pursuit starts; others do so on the fly. Each method has
different effect on reducing a particular cost component,
while potentially increasing others. We illustrate this trade-
off by optimizing CrowdNav via the three methods listed
below. These have been chosen (no only) since each of them
inherently aims at reducing one out of the three cost
components.

1. Grid search over the configuration space (factorial
design)—mainly reduces adaptation cost;

2. Sequential model-based optimization (SMBO),
also referred to as Bayesian optimization— mainly
reduces time cost;

3. Local search starting from a predefined
configuration— mainly reduces endurability cost.

A. GRID SEARCH
Grid search systematically goes through all the possible

configurations of a discretized configuration space CS. It
starts from the configuration at an edge of CS and changes
configuration by increasing one parameter 𝑥3value at a time.
Using design-of-experiments (DoE) terminology [16], this
method corresponds to full factorial design. Here, all
experiments (configurations to be tested) are designed
(specified) a priori. The results of grid search can be
analyzed with factorial ANOVA to determine which of the
parameters 𝑥&, 𝑥(,… , 𝑥*or combinations of them affect the
response. The results can also be used for fitting a first- or
second-order polynomial model that approximates the
response surface 𝑅𝑆 [17]. Since grid search always slightly
modifies a single parameter	𝑥3 , the search only makes small
moves in the configuration space, resulting likely in low
adaptation cost.

B. SMBO
In each experiment, SMBO builds a surrogate model (e.g.

Gaussian process, decision tree) of the response surface 𝑅𝑆
and chooses the next experiment—the next configuration to
try out [18], [19]. To choose the next experiment, SMBO
uses an acquisition function that balances exploration with
exploitation: it tries to find a globally optimal configuration
with the least number of experiments by exploring less
visited regions in CS and exploiting the learned knowledge
by evaluating close-to-known good configurations. Since the
focus is to converge fast, SMBO inherently reduces the time
cost of experimentation. However, adaptation and
endurability costs may be compromised due to jumps in CS.

C. LOCAL SEARCH
Local search is a simple method, inspired by Evolutionary

Operation by Box [20], that aims at finding a better
configuration (local optimum) in a neighborhood in CS.
Local search starts from evaluating a starting configuration

VOLUME XX, 2017 5

(current one), tries out all the neighboring configurations and
moves to the configuration that performs best, and, of course,
better than the current configuration. If no such neighbor
exists, the search terminates. The bottom line is that local
search does not aim at a globally optimal configuration.
Since it incrementally improves the system output by making
only small modifications at a time, it does not bring high risk
of running harmful configurations; so there is a good chance
that it does not worsen the endurability cost.

V. CONCEPT EVALUATION
The goal of this section is to demonstrate AOEDA and to
compare the different optimization strategies and their effect

on the different cost components. In particular, we evaluate
the applicability of AOEDA in the optimization of the traffic
navigation use case introduced in Section II. Since we aim at
showcasing the different cost components, we benefit from
the flexibility of the simulator bundled with CrowdNav, as
other self-adaptation approaches did in their evaluations
[21]–[23].

In CrowdNav we simulated random trips of 500 cars in
the city of Eichstädt, Germany. In case of a high trip
overhead (higher than 2.5), a driver complaint was issued
with some probability (we used 50%). The output of an
experiment was the median of trip overheads of 5000 trips
and the number of complaints issued in the meantime. Such

(a) Grid search for 9 values of route randomization and (b) Sequential Model-Based Optimization (SMBO) with 20 iterations.
 7 values of data freshness threshold.

(c) Local search: The algorithm visits the 4 neighbors of a configuration and moves towards the best performing neighbor.

Figure 2: Comparison of the three pursuit strategies on CrowdNav. Darker areas of the response surface indicate lower median values (better) of trip
overheads.

VOLUME XX, 2017 6

a large number of recorded overheads resulted in a median
value that was rather stable and did not suffer from
measurements errors (outliers, etc.). The simulation results
reported in the rest of this section serve for demonstration of
the different cost types and informal comparison of the
pursuit strategies.

Recall from Sec. II that we consider configuration of two
parameters: “route randomization” and “data freshness
threshold”. The latter controls the length of the time window
for which traffic data is considered relevant in the routing
process. In Figure 2, the configuration of each experiment
(represented as a point) along with the median of trip
overhead per experiment is depicted. In particular, Figure 2.a
shows the pursuit using the SMBO strategy with Gaussian
processes as the surrogate model, 3.b using grid search, and
3.c using local search. For each of these subfigures, the first,
last, and best configuration are marked in black, white, and
green, respectively. Furthermore, each pursuit yielded a
different optimal configuration and value of cost components
as described below. Recall that a cost component in our case
is neither a system parameter nor a system output, but a
property of the optimization strategy.

Optimal configurations. In the case of both the SMBO and
grid search, the pursuit stopped when it exhausted its budget
(20 experiments for SMBO, 63 for grid search), whereas
local search terminated not being able to find better local
optimum in neighboring configurations. Among the pursuit
strategies, grid search yielded the optimal configuration. At
the same time, SMBO yielded the second-best optimal
configuration (a local optimum), whereas local search was
less efficient. Although the three strategies yielded different
results, all of them have matched our intuition that some
route randomization boosts the routing efficiency, whereas
more randomization hinders it.

Time cost. SMBO is faster in finding a good configuration
than grid search: with a pursuit budget of 20 experiments,
SMBO reports a local optimum that is close to the best-
known optimum reported by grid search. However, grid
search needs a much higher pursuit budget of 63
experiments. Finally, local search needs a low pursuit budget
of 13 experiments.

Adaptation cost. On the other side, grid search and local
search carry out only small changes in CS (low adaptation
cost), whereas SMBO occasionally exhibits big jumps in the
configuration space. Given that

𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡 = = 𝑐𝑜𝑠𝑡	𝑜𝑓𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡	
CDECF3GC*HI

and the cost of a single experiment in CrowdNav is always a
small constant, the big jumps in CS do not lead to higher
adaptation cost in case of SMBO.

Endurability cost. A harmful configuration leading to
higher trip durations will also yield more user complaints—
and thus increase the endurability cost. In case of SMBO,
this can happen due to the fact that the pursuit will explore

less visited regions of CS. We measured the number of
issued complaints and found out that in the case of grid
search 15,405 complaints were reported in total (average
complaints-to-trips ratio: 4.89%), compared to only 4,176
complaints in total in case of SMBO (average complaints-to-
trips ratio: 4.17%). This is of course related to the less
experiments (20) performed for SMBO compared to grid
search (63). When using local search by starting from a
configuration of “route randomization” of 0.1 and “data
freshness threshold” of 400 (Figure 2.c.), 3,226 complaints
were reported in total (average complaints-to-trips ratio:
4.61%). Although the total number of complaints was less
than in the case of SMBO, we note that the efficiency of local
search highly depends on the initial configuration. A main
goal of the evaluation was to illustrate the trade-offs between
different cost factors for production settings, where
adaptation cost and endurability cost can be very significant.

In adaptive systems research (including our earlier work),
extensive evaluations of the effect of the different strategies
on the optimization objective and the cost components
confirm the above observation. For instance, in [11] we
compared the effectiveness of Bayesian optimization with
two variants of genetic algorithms on optimizing CrowdNav
at runtime. In [7], we combined Bayesian optimization with
factorial design (grid search), A/B testing and binomial
testing (for detecting harmful configurations). In [24], we
performed experiments in a microservice-based production
environment to collect data with the goal of continuous
optimizing services deployment in an edge-cloud scenario.
Finally, in [25] we used Bayesian optimization in
combination with reinforcement learning to optimize
machine learning pipelines.

VI. DISCUSSION OF KEY LEARNINGS
In this section, we summarize the lessons we have learned
when applying AOEDA to CrowdNav and discuss our
recommendations when applying AOEDA in general.

A. LESSONS LEARNED

Trade-offs between different pursuits and cost
components need to be considered for each case. Local
search can be good in reducing endurability cost if a good
starting point is chosen and a good or best local optimum can
be found. Grid search is exhaustive and slow, but has
minimal cost for adaptation in each step. Both
Grid and local search work best if the configuration space is
continuous, without sharp peaks. SMBO explores the RS
more widely and can detect more local optima (and the
global optimum at best). Still, any application of SMBO
needs to consider all the three cost components, and
especially the endurability cost as it makes bigger jumps in
the configuration space.

Experimentation cost depends on the application. As we
showcased in Sec. IIIC, one needs to account for the different
cost components associated with the choice of a pursuit

VOLUME XX, 2017 7

strategy. However, cost is also associated with the target
LSIS itself: For instance, applying AOEDA in optimizing a
car-sharing system by modifying the position of some of the
available cars will most probably have higher adaptation cost
than changing the values of CrowdNav parameters, since
moving cars around comes with additional effort. A good
idea before starting to optimize an LSIS is to first estimate
the size of all cost components. Time cost can be estimated
by looking at the variance of system outputs, with higher
variance pointing to longer experiments and higher time cost.
Adaptation cost may be estimated offline by calculating the
cost of each potential experiment. Finally, endurability cost
is hard to estimate offline; small-scale pre-experiments
should be used here to gauge the amount of endurability cost
that can be expected.

B. RECOMMENDATIONS

Harmful experiments should be aborted early. Time and
endurability costs’ evaluation can be used not only for
assessing different optimization strategies, but also for
aborting an experiment if it incurs a high time and/or
endurability cost. This is analogous to the abortion criteria
used in A/B testing for stopping an online experiment before
many users are exposed to a harmful configuration [26].

Large configurations spaces should be pruned offline. In
order to reduce the time cost of a pursuit strategy, CS may
have to be pruned offline to reduce the number or range of
parameters considered in the pursuit. One way to achieve this
is to learn (offline) which parameters have the strongest
effect on the system output and use them to form the CS
considered in the pursuit [22].

Humans in the loop. Ideally, AOEDA should be performed
in complete autonomy in which continuous monitoring of the
LSIS is used for triggering a pursuit when the current system
configuration is considered suboptimal with respect to the
runtime situation (e.g. high traffic in the city). Nevertheless,
when automated pursuit triggering is difficult to achieve,
humans can be in the loop to possibly trigger new pursuits.
Indeed, automating the triggering of new pursuits is an
important subject of our future work.

VII. COST ASPECTS IN SELF-ADAPTIVE AND ONLINE
EXPERIMENTATION APPROACHES
Our new approach for online experimentation integrates
adaptation, search and optimization, and experimentation for
systems with a larger configuration space, where no suitable
model of the system and environment exists. As there is a
vast body of related work, we compare AOEDA to different
related approaches in detail below.

The main goal of self-adaptive systems is adaptation in
response to changes in their internal state and their operating
environment [27], [28]. Considerable research efforts focus
on finding the most suitable new configuration [27], [29]
based on a model (e.g. a Markov decision process). In
AOEDA, we use adaptation to explore the configuration

space by experiments without such a model. Thus, we have
to consider the cost of several adaptation steps, which leads
to our novel cost classification. The notion of cost that
appears in the self-adaptive literature mainly focuses on the
utility or suitability of a single target configuration,
compared to others in a model. Also, other works consider
cost in the context of monitoring, e.g. [30].

In the area of adaptive systems, approaches exist that
employ online planning to find the best adaptation actions at
runtime [22], [31]. A number of algorithms have been
employed to this end: Hill climbing has been used to
implement a search-based feedback loop [32]; genetic
programming and genetic algorithms (including NSGA-II
and novelty search) have been advocated as part of the vision
of genetic improvement for adaptive software engineering
[33] and used in determining optimal configurations [11],
[23], [34]–[36]; finally, multi-armed bandits [37] and
Bayesian optimization [7], [11] have been employed for
online planning in self-adaptive systems.

Although the emphasis in these works is on the quality of
the found solution, the time needed to find such solution is
also evaluated and reported, as, e.g., in [21], [23], [36].
Elapsed time is indeed related to our time cost; however, we
emphasize that in our approach, runtime experiments are
performed with the system itself, not with a model of it. In
this setting, model-less approaches using multi-criteria
optimization have also reported time costs as a significant
factor, but do not mention adaptation or endurability costs
[11]. For specific applications of adaptive systems, the
adaptation cost is considered, e.g. in [38], [39] the effort to
start up virtual machines is relevant for adaptation.

In the recent literature on online experimentation [1], the
focus is on improving connected software applications. Here,
endurability cost is emphasized over adaptation or time cost,
since there is a high risk in user exposure to suboptimal
functionality [40], [41]. Online experimentation is a
generalization of A/B testing [26] and, in this line, typically
a discrete set of options is considered, not the exploration of
a search space with possibly continuous variables.

In summary, a main contribution of our new AOEDA
approach is the cost classification suitable for experiment-
driven adaptation in AOEDA. We show how to use different
multi-criteria optimization strategies in this cost model,
including incremental optimization based on Gaussian
Processes.

VIII. CONCLUSIONS
In this paper, we presented our new approach for automated
online experiment-driven adaptation (AOEDA). This
integrates concepts of optimization, experimentation and
adaptation for systems with a larger configuration space,
where no suitable model of the system and environment
exists. To overcome the problem of missing model, we used
online experimentation as in A/B testing, but for larger
configuration spaces where A/B testing does not scale.

VOLUME XX, 2017 8

Furthermore, we argued that cost needs to be considered
differently for AOEDA. In this line, we presented a novel
classification of the different cost factors which are most
relevant for AOEDA, and showed the connection to related
approaches in self-adaptive systems and online
experimentation. Based on a use case of traffic management,
we compared different options for controlling the online
experiments with different cost focus and drew several
learnings for AOEDA.

ACKNOWLEDGMENT
The research leading to these results has received funding
from the ECSEL Joint Undertaking (JU) under grant
agreement No 783221.

REFERENCES
[1] R. Kohavi et al., “Online experimentation at Microsoft,” in Data

Mining Case Studies and Practice Prize III, 2009, vol. 11,
Accessed: Jun. 21, 2017. [Online]. Available:
http://www.appliedaisystems.com/papers/DMCS2009_Workshopp
roceedings4.pdf#page=11.

[2] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A.
Fabijan, “The Anatomy of a Large-Scale Experimentation
Platform,” in Proc. of ICSA 2018, Apr. 2018, pp. 1–109.

[3] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping
experiment infrastructure: More, better, faster experimentation,” in
Proc. of SigKDD 2010, ACM, 2010, pp. 17–26, Accessed: Jun. 13,
2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1835810.

[4] “Uber Experimentation Platform,” Nov. 01, 2019.
https://eng.uber.com/tag/experimentation/.

[5] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, “Self-
Adaptation Based on Big Data Analytics: A Model Problem and
Tool,” in Proc. of SEAMS 2017, IEEE, May 2017, pp. 102–108.

[6] Steven LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept., Iowa State University,
98–11, Oct. 1998. Accessed: Feb. 15, 2021. [Online]. Available:
http://cs.brown.edu/courses/cs1951r/assignments/motionplanning/r
rtpaper.pdf.

[7] I. Gerostathopoulos, C. Prehofer, and T. Bures, “Adapting a
System with Noisy Outputs with Statistical Guarantees,” in Proc.
of SEAMS 2018, 2018, pp. 58–68.

[8] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
Development and Applications of SUMO - Simulation of Urban
MObility,” Int. J. Adv. Syst. Meas., vol. 5, no. 3 & 4, pp. 128–138,
Dec. 2012.

[9] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–
82, Apr. 1997, doi: 10.1109/4235.585893.

[11] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel,
“Planning as Optimization: Dynamically Discovering Optimal
Configurations for Runtime Situations,” in 2019 IEEE 13th
International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), Jun. 2019, pp. 1–10, doi:
10.1109/SASO.2019.00010.

[12] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, “BUNGEE:
An Elasticity Benchmark for Self-Adaptive IaaS Cloud
Environments,” in Proceedings of the 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, USA, May 2015, pp. 46–56, doi:
10.1109/SEAMS.2015.23.

[13] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang,
“mlrMBO: A Modular Framework for Model-Based Optimization
of Expensive Black-Box Functions,” ArXiv Prepr.
ArXiv170303373, 2017.

[14] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, “Algorithm
selection based on exploratory landscape analysis and cost-
sensitive learning,” in Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference -
GECCO ’12, Philadelphia, Pennsylvania, USA, 2012, p. 313, doi:
10.1145/2330163.2330209.

[15] I. Gerostathopoulos, C. Prehofer, L. Bulej, T. Bures, V. Horky, and
P. Tuma, “Cost-Aware Stage-Based Experimentation: Challenges
and Emerging Results,” in Proc. of ICSA 2018, 2018, pp. 72–75.

[16] S. Ghosh and C. R. Rao, Eds., Handbook of Statistics 13: Design
and Analysis of Experiments, 1 edition. Amsterdam: North-
Holland, 1996.

[17] D. Baş and İ. H. Boyacı, “Modeling and optimization I: Usability
of response surface methodology,” J. Food Eng., vol. 78, no. 3, pp.
836–845, Feb. 2007, doi: 10.1016/j.jfoodeng.2005.11.024.

[18] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global
Optimization of Expensive Black-Box Functions,” J. Glob. Optim.,
vol. 13, no. 4, pp. 455–492, Dec. 1998, doi:
10.1023/A:1008306431147.

[19] P. I. Frazier, “A Tutorial on Bayesian Optimization,”
ArXiv180702811 Cs Math Stat, Jul. 2018, Accessed: May 19,
2019. [Online]. Available: http://arxiv.org/abs/1807.02811.

[20] G. E. P. Box and N. R. Draper, Evolutionary Operation: A
Statistical Method for Process Improvement, Y First printing
edition. New York: Wiley-Interscience, 1998.

[21] T. Chen, K. Li, R. Bahsoon, and X. Yao, “FEMOSAA: Feature-
Guided and Knee-Driven Multi-Objective Optimization for Self-
Adaptive Software,” ACM Trans. Softw. Eng. Methodol., vol. 27,
no. 2, pp. 1–50, Jul. 2018, doi: 10.1145/3204459.

[22] P. Jamshidi, J. Cámara, B. Schmerl, C. Kästner, and D. Garlan,
“Machine learning meets quantitative planning: enabling self-
adaptation in autonomous robots,” in Proc. of SEAMS 2019, May
2019, pp. 39–50, Accessed: Sep. 13, 2019. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3341527.3341534.

[23] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues,
“Managing uncertainty in self-adaptive systems with plan reuse
and stochastic search,” in Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-
Managing Systems - SEAMS ’18, Gothenburg, Sweden, 2018, pp.
40–50, doi: 10.1145/3194133.3194145.

[24] L. Bulej et al., “Managing latency in edge–cloud environment,” J.
Syst. Softw., vol. 172, p. 110872, Feb. 2021, doi:
10.1016/j.jss.2020.110872.

[25] X. Sun, J. Lin, and B. Bischl, “ReinBo: Machine Learning Pipeline
Conditional Hierarchy Search and Configuration with Bayesian
Optimization Embedded Reinforcement Learning,” in Machine
Learning and Knowledge Discovery in Databases, Cham, 2020,
pp. 68–84, doi: 10.1007/978-3-030-43823-4_7.

[26] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: survey and practical guide,”
Data Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, Feb. 2009,
doi: 10.1007/s10618-008-0114-1.

[27] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker,
“A survey on engineering approaches for self-adaptive systems,”
Pervasive Mob. Comput., vol. 17, pp. 184–206, Feb. 2015, doi:
10.1016/j.pmcj.2014.09.009.

[28] B. Cheng et al., “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, Springer Berlin Heidelberg., 2009, pp. 1–26.

[29] K. Angelopoulos, A. V. Papadopoulos, and J. Mylopoulos,
“Adaptive predictive control for software systems,” in Proceedings
of the 1st International Workshop on Control Theory for Software
Engineering, New York, NY, USA, Aug. 2015, pp. 17–21, doi:
10.1145/2804337.2804340.

[30] E. Zavala, “Towards Adaptive Monitoring Services for Self-
Adaptive Software Systems,” in Service-Oriented Computing –
ICSOC 2017 Workshops, Cham, 2018, pp. 357–362, doi:
10.1007/978-3-319-91764-1_31.

[31] T. Zhao, “The Generation and Evolution of Adaptation Rules in
Requirements Driven Self-Adaptive Systems,” in 2016 IEEE 24th
International Requirements Engineering Conference (RE), Sep.
2016, pp. 456–461, doi: 10.1109/RE.2016.18.

VOLUME XX, 2017 9

[32] P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based
adaptive systems: a quantitative approach,” in Proceedings of the
9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2014, pp. 7–16.

[33] M. Harman et al., “Genetic improvement for adaptive software
engineering (keynote),” in Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Hyderabad, India, Jun. 2014, pp. 1–4, doi:
10.1145/2593929.2600116.

[34] Z. Coker, D. Garlan, and C. L. Goues, “SASS: Self-Adaptation
Using Stochastic Search,” in Proceedings of the 2015 IEEE/ACM
10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, USA, May 2015, pp. 168–
174, doi: 10.1109/SEAMS.2015.16.

[35] G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time adaptation of
mobile applications using genetic algorithms,” in 2013 8th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), May 2013, pp. 73–82, doi:
10.1109/SEAMS.2013.6595494.

[36] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, C. Arora, and
F. Zimmer, “Dynamic Adaptation of Software-defined Networks
for IoT Systems: A Search-based Approach,” SEAMS 2020, p. 12,
2020.

[37] B. Porter and R. R. Filho, “Distributed Emergent Software:
Assembling, Perceiving and Learning Systems at Scale,” in SASO
2019, 2019, p. 10.

[38] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G.
Jiang, “Power and Performance Management of Virtualized
Computing Environments Via Lookahead Control,” in 2008
International Conference on Autonomic Computing, Jun. 2008, pp.
3–12, doi: 10.1109/ICAC.2008.31.

[39] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, “Dynamic Service
Placement in Geographically Distributed Clouds,” in 2012 IEEE
32nd International Conference on Distributed Computing Systems,
Jun. 2012, pp. 526–535, doi: 10.1109/ICDCS.2012.74.

[40] R. Kohavi, D. Tang, and Y. Xu, Trustworthy Online Controlled
Experiments: A Practical Guide to A/B Testing. Cambridge,
United Kingdom ; New York, NY: Cambridge University Press,
2020.

[41] Y. Xu, W. Duan, and S. Huang, “SQR: Balancing Speed, Quality
and Risk in Online Experiments,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, New York, NY, USA, Jul. 2018, pp. 895–904, doi:
10.1145/3219819.3219875.

ILIAS GEROSTATHOPOULOS is an Assistant
Professor of Computer Science at Vrije
Universiteit Amsterdam, Netherlands. He
obtained a Ph.D. in Computer Science from the
Department of Distributed and Dependable
Systems, Faculty of Mathematics and Physics,
Charles University in Prague. He has spent time as
a postdoctoral researcher in the Department of
Informatics at the Technical University of

Munich. His research focuses on software engineering, software
architecture, and self-adaptive systems.

FRANTIŠEK PLÁŠIL is professor of software
engineering in the Department of Distributed and
Dependable Systems (D3S). Charles University,
Prague. In his research, he focuses on component-
based software architectures, and also on allocation
of formal methods in software systems. He has led
several D3S research teams in a number of research
projects such as ITEA OSMOSE, ITEA OSIRIS,
EU FP7 Q-ImPrESS, and ASCENS. He co-authored

over 100 refereed articles in international journals and proceedings of
international conferences, and also served on the program committees of
numerous international conferences, and editorial boards of several
international journals. In the course of his carrier, he has had visiting

positions in US at the University of Denver, Wayne State University,
University of New Hampshire, and in Austria at the University of Linz.

CHRISTIAN PREHOFER holds a MS degree
from the University of Illinois at Urbana-
Champaign and obtained his Ph.D. and habilitation
in computer science from TU München in 1995
and 2000. Currently, he is director at DENSO
Germany and lecturer at TU München. Before this,
was leading research groups at fortiss and
Fraunhofer. He also was acting as professor in

Computer Science at LMU München and Chang’an University. Before
2009, he held different management and research positions in the mobile
communication industry. He is author of more than 150 publications and 34
granted patents.

JANEK THOMAS is group leader of the
Fraunhofer IIS group AutoML & XAI funded by
the Ada Lovelace Center. The group is closely
connected to the Working Group Computational
Statistics as well as the Chair of Database Systems
and Data Mining of Ludwig Maximilian
University (LMU) of Munich. He finished his PhD
at the Working Group Computational Statistics of

LMU in April 2019 focusing on Automated Machine Learning and Gradient
Boosting. During his PhD he did research internships at the Microsoft Cloud
and Information Services Lab and H2O.ai.

 BERND BISCHL is Professor for Statistical
Learning and Data Science at the Department of
Statistics at the Ludwig Maximilian University of
Munich. He obtained his PhD in 2013 from the
Department of Statistics at TU Dortmund, Germany.
He works in data science, machine learning and
computational statistics.

