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Abstract—Cyber-physical systems (CPS) and IoT
systems are nowadays commonly designed as self-
adaptive, endowing them with the ability to dynami-
cally reconfigure to reflect their changing environment.
This adaptation concerns also the security, as one of the
most important properties of these systems. Though
the state of the art on adaptivity in terms of security
related to these systems can often deal well with fully
anticipated situations in the environment, it becomes
a challenge to deal with situations that are not or
only partially anticipated. This uncertainty is however
omnipresent in these systems due to humans in the
loop, open-endedness and only partial understanding
of the processes happening in the environment. In this
paper, we partially address this challenge by featuring
an approach for tackling access control in face of par-
tially unanticipated situations. We base our solution
on special kind of aspects that build on existing access
control system and create a second level of adaptation
that addresses the partially unanticipated situations
by modifying access control rules. The approach is
based on our previous work where we have analyzed
and classified uncertainty in security and trust in such
systems and have outlined the idea of access-control re-
lated situational patterns. The aspects that we present
in this paper serve as means for application-specific
specialization of the situational patterns. We showcase
our approach on a simplified but real-life example in
the domain of Industry 4.0 that comes from one of our
industrial projects.

Index Terms—Self-adaptive systems; security; access
control; aspect-oriented.

I. Introduction
Over recent years, modern smart systems has been

influencing more and more parts of every day life. Cyber-
physical systems (CPS) and IoT systems like smart traffic,
buildings or manufacturing has become ubiquitous. These
system are in most cases very dynamic and designed to
be self-adaptive. As they closely interact with humans,
their security and trust belong to their most important
properties [1].

The self-adaptive systems need to cope with many only
partially anticipated or even fully unanticipated situations
and, as a result, there is an inherent uncertainty in them.
Security and trust, which are traditionally modeled rather
rigidly, are therefore also needed to cover uncertainty and
to be self-adaptable.

In our recent paper [2], we have analyzed and classified
uncertainty in security and trust in smart self-adaptive
systems from the domain of Industry 4.0. Importantly, we
have outlined the idea of access-control related situational
patterns, which serve as adaptation strategies in cases when
partially anticipated or completely unanticipated situations
are encountered in the system. By themselves the patterns
were abstract, did not have exact semantic and did not
have any realization in implementation.

The goal of this paper is to provide semantics to these
patterns by their explicit specification for the domain of
Industry 4.0 and realize them using special kind of aspects,
whose abstractions and implementation we feature as the
main contribution of the paper.

Rather than defining a new specification language, we are
using the previously developed DSL [3] for access-control
specifications systems. The patterns can be seen as cross-
cutting concerns which are applied dynamically over a core
access-control specification. The approach is inspired by
the aspect-oriented programming [4].

Our solution differs from the traditional aspect-based
approaches which define how program is modified via point-
cuts (i.e., where program’s behavior has to be changed),
advices (how program’s behavior is to be changed) and
additional declaration (structural updates of the program)
and which view security as an aspect, but do not provide
any special aspect-based abstractions tailored towards
security and its adaptation. In our approach we feature
special access control adaptation aspects that are used to
adapt existing dynamic access-control rules; thus providing
a second level of dynamicity into a system with adaptive
access-control.

The paper is structured as follows. In Section II we
describe the motivation example and patterns defined in
[2] and present our approach for capturing access control
in dynamic systems. In Section III we show the aspect-
oriented definition that provides a concrete semantics of
the situational patterns for the domain of Industry 4.0. Sec-
tion IV presents the implementation of our approach while
Section V discusses the related work. Finally, Section VI
concludes the paper.



II. Access control
As a particular example, we are using an updated use-

case from our previous Trust 4.0 project1, which targeted
the dynamic security in the Industry 4.0 environment, in
particular the access control. The use case is a simple
one but still it is a realistic scenario created based on
descriptions provided by the industrial partners of the
project.

In the use case, we assume a factory with multiple
workplaces (see Figure 1). Workers in the factory are
organized to shifts. Each shift has a foreman and is assigned
to a particular workplace. The workers are not allowed to
enter another workplace. Additionally, a worker may not
enter the workplaces without a head gear that has to be
taken from a dispenser. Importantly, the shift assignment
is not static and may change every day and thus roles of
workers can rapidly change.

In each workplace, there is a machine that can be
configured to produce a particular product and the logs
of the machine are treated as intellectual property of the
factory. The factory is also served by trucks bringing in
parts and carrying away manufactured products. Only
authorized trucks can enter the factory compound and
only in the designated time interval.
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Fig. 1. Factory example

In the scope of the above mentioned project, we have
created an approach for specifying access-control in a
systems via security ensembles [3]. In the approach, we
treat security as self-adaptive architecture, in which an
adaptation controller continuously evaluates the conditions
(access control rules) defined as ensembles and assigns/re-
moves individual rights to elements in the system. In more
detail, the approach is shown in Section II-B.

Note that while our approach is based on the security
ensembles, the key abstraction that we pursue in the paper
is that the access control is dealt with on two levels: (1)

1http://trust40.ipd.kit.edu/home/

Static access control rules (in form of subject–verb–object)
exist in the system. These rules are used for instance
for management of physical access via existing solutions
utilizing a smart locks with RFID readers. (2) Dynamic
situation-specific rules form an adaptation layer above the
static rules (#1). The dynamic rules are tied to non-trivial
relations between entities and spatio-temporal context. The
dynamic rules re-generate (adapt) the static rules based
on the current situation.

While this two-level approach to access control eas-
ily captures the dynamic changes in the Industry 4.0
environment and has been successfully evaluated in the
project, we have identified a number of situations where
the ensemble-based specification by itself is not enough.
These situations are connected with potentially rare or
unanticipated situations occurring in the system. In [2],
we have provided a classification of uncertainty in access
control and presented identified situational patterns, which
serve as a strategy for dynamic adaptation of security
access rules. Namely, we have identified five patterns, which
are briefly recapitulated below. These patterns amend the
adaptation provided by dynamic situation-specific rules.
They provide a second-level of adaptation that adapts the
decisions taken by the dynamic rules. While the dynamic
rules cover anticipated situations, the patterns handle the
partially unanticipated situations.

A. Situational Patterns
Pattern 1a—Adding allow: A new situation cannot

be handled with currently assigned access control rules—a
new allow rule needs to be assigned, i.e., a new security
access rule assigning the allow to a component is added to
the system. Context of the pattern is as follows. The allow
rule is assigned to a component, which either has: (a) such
a role in the system that the new rule does not fall outside
the component’s area of competence, or (b) a similar role
in the system as a component that already has the same
rule.

Pattern 1b—Adding deny: A potentially dangerous
situation occurs in the system. The deny access control rule
is assigned to the component (i.e., a new security access
rule assigning the deny to a component is added to the
system). Context of the pattern is as follows. A component
has started to misbehave—accessing more than is usual
and/or necessary for it. As a security measure, the deny
rule is assigned to the component.

Pattern 2a—Removing allow: A potentially dan-
gerous situation occurs in the system. The allow access
control rule is removed from the component (i.e., an existing
security access rule assigning the allow to a component is
removed from the system). Context of the pattern is as
follows. A component has started to misbehave and or is
broken. As a security measure, the allow rule is removed
from the component. The pattern is very similar to the
Pattern 1b—the difference is that the 1b is used when there
is no rule to be removed.

http://trust40.ipd.kit.edu/home/


Pattern 2b—Removing deny: The system runs in a
situation that is blocked by a rule with the deny access
control rule. The deny rule is removed from the component
(i.e., an existing security access rule assigning the deny
to a component is removed from the system). Context
of the pattern is as follows. The system can continue in
the common operations only if a component can access
an entity (e.g., another component) but there is a rule
denying the access. The rule is removed (the rule can be
removed only in the case the rule represents redundancy
in the security chain).

Pattern 3 – a new access rule validator: The system
runs in a situation that is blocked by a component that
validates access for other components (e.g., the component
is broken). Another component is chosen as a replacement
and serves as a new validator. Context of the pattern is
as follows. The selected component has to already have
a supervisor-like role in the system (and thus the risk of
assigning additional access control rules to it is minimized).

B. Access control via ensembles
As mentioned above, we have created an approach for

specifying access-control in a system via security ensembles
and thus model access control rule assignment as an
adaptive system. In this section we very briefly overview
the approach; for details see [3].

For rapid creation and experimentation with, we cre-
ated a Scala-based DSL to define access-control specifica-
tions. Listing 1 shows a small part of the specification
for the above described example. There are two main
concepts—components and ensembles. Components rep-
resents physical objects (Door, Gate, Dispenser, Worker)
while ensembles define dynamic access control rules over
the components. The components are defined via their
observable attributes (lines 2–9 in the listing). An ensemble
is a dynamically established group of components. Namely,
an ensemble determines a particular dynamically emerging
situation, identifies components that take part in the
situation and specifies access rules for the components.
For example the TransportAccessThroughGate (lines 16–24)
ensemble assigns a truck the allow rule for accessing the
factory, but only during the scheduled time period (defined
by the situation definition).

As seen from the listing, ensembles can be hierarchically
nested (one ensemble defined within another). The
top-level ensemble describes a goal of the system as a
whole while the nested ensembles represents individual
sub-goals. In the example, a single component can be
simultaneously in several different situations; thus, it can
be a member of several ensembles at the same time.

1 class TestScenario() extends Model {
2 object CAS extends Component { /∗...∗/ }
3 class Gate(/∗...∗/) extends Component { /∗...∗/ }
4

5 class Worker(/∗...∗/) extends Component {
6 val id: String, var position: Position,

7 val capabilities: Set[String], var hasHeadGear: Boolean
8 }
9 /∗ ... ∗/

10

11 class FactorySystem(factory: Factory) extends RootEnsemble {
12 class GateAccess(gate: Gate) extends Ensemble {
13 initiatedBy(CAS)
14 val assignedTransports = transports.filter(tr =>

tr.assignedGate == gate)
15

16 class TransportAccessThroughGate(transport: Transport)
extends Ensemble {

17 situation {
18 (now isEqualOrAfter (transport.scheduledArrival

minusMinutes 5)) &&
19 (now isEqualOrBefore (transport.scheduledArrival

plusMinutes 15)) &&
20 transport.assignedGate == gate
21 }
22

23 allow(transport, Enter, gate)
24 }
25

26 val transportAccesses = rules(transports.filter(tr =>
tr.assignedGate == gate).map(tr => new
TransportAccessThroughGate(tr)))

27 }
28

29 class ShiftTeam(shift: Shift) extends Ensemble {
30 initiatedBy(CAS)
31

32 object AccessToFactory extends Ensemble {
33 situation {
34 (now isEqualOrAfter (shift.startTime minusMinutes

45)) &&
35 (now isEqualOrBefore (shift.endTime plusMinutes

45))
36 }
37

38 allow(shift.foreman, Enter,
shift.workPlace.factoryBuilding)

39 allow(assignedWorkers, Enter,
shift.workPlace.factoryBuilding)

40 }
41

42 object AccessToDispenser extends Ensemble {
43 situation {
44 (now isEqualOrAfter (shift.startTime minusMinutes

40)) &&
45 (now isEqualOrBefore shift.endTime)
46 }
47

48 allow(shift.foreman, Use,
shift.workPlace.factoryBuilding.dispenser)

49 allow(assignedWorkers, Use,
shift.workPlace.factoryBuilding.dispenser)

50 }
51

52 object AccessToWorkplace extends Ensemble { /∗ ... ∗/ }
53

54 object AccessToMachine extends Ensemble { /∗ ... ∗/ }
55

56 object
NoAccessToMachineSensitiveDataOtherThanFromWorkplace
extends Ensemble { /∗ ... ∗/ }

57

58 object AccessToBrokenMachine extends Ensemble {
59 val assignedRepairmen = repairmen.filter(rm =>

rm.machine == shift.workPlace.machine)
60 allow(assignedRepairmen, Read("logs"),

shift.workPlace.machine)
61 }
62

63 deny(repairmen, Read("∗"), shift.workPlace.machine,



PrivacyLevel.SENSITIVE)
64

65 /∗ ... ∗/
66 rules(
67 AccessToFactory, AccessToDispenser, AccessToWorkplace,
68 AccessToMachine, AccessToBrokenMachine,

CancellationOfWorkersThatAreLate
69 )
70 }
71

72 val shiftTeams = rules(shifts.filter(shift =>
shift.workPlace.factoryBuilding.factory ==
factory).map(shift => new ShiftTeam(shift)))

73

74 val gateAccessRules = rules(gates.map(gate => new
GateAccess(gate)))

75 }
76

77 val factoryTeam = root(new FactorySystem(factory))
78 }

Listing 1. Original security specification

III. Aspect-oriented self-adaptation for access
control

The situational patterns presented in the previous
section are by themselves abstract and independent of
the application domain in which they are applied and the
particular access control method used. In this section, we
provide precise semantics to the patterns by reifying them
into access control adaptation aspects and showcasing them
by applying them to our use-case of security ensembles in
Industry 4.0 settings.

By specifying the patterns as aspects and not mixing
them manually in the primary specification of security
ensembles (like the one in Listing 1), we make the primary
specification more comprehensible as it focuses on known
anticipated situations. The aspects cope with situations
that are partially unknown and thus their handling is
often more general and applies to multiple situations (i.e.,
ensembles in our case).

A. Patterns as aspects
A situational pattern (and its instantiation as an access

control adaptation aspect) can be seen as a recipe for
adaptation of rules in case of some particular type of
uncertainty. As such the pattern represents an individual
concern that can be applied through the whole specification.
Therefore it closely aligns with the idea of aspects in aspect-
oriented programming (AOP) [4].

AOP targets modularization of a program via separation
of cross-cutting concerns. It is done by adding behavior to
the code but this additional behavior does not modify
the code directly and is specified separately. In more
detail, AOP defines a concept of join point, which is a
point within the program run (e.g., a call of a particular
method/function). The pointcut is a definition of join points
(typically, a single pointcut defines an infinite number of
join points). Finally, an advice is behavior that has to
be executed when the program reaches a specified join

point. An aspect is the definition of a set of pointcuts and
corresponding advices.

In a similar vein, we structure our aspects and adjust
them to reflect the structure of the patterns—i.e., the
definition (similar to a pointcut) of a situation and the
specification of how to modify the assigned access control
rules (similar to an advice). In the rest of the section, we
present the aspect-oriented specification of the patterns
for the example presented in Section II and explain the
semantics of our aspect specification.

B. Specification of access control adaptation aspects
The most important parts of the specification are shown

in Listing 2. We have designed the specification language
as internal DSL in Scala programming languge. This allows
for easier integration with existing infrastructures based
on Java.

1 object Pattern1a extends AccessControlAdaptationAspect {
2 override type SubjectType = Worker
3 override type ObjectType = Component
4

5 spec {
6 (worker, component) =>
7

8 pointcut {
9 existsAllowRule(worker, ActionSelection.ANY, component)

&&
10 component.hasFailure &&
11 worker.isForeman
12 }
13

14 insert_rules {
15 allow(worker, ActionSelection.ALL, component)
16 }
17 }
18 }
19

20 class Pattern1b extends AccessControlAdaptationAspect {
21 override type SubjectType = Worker
22 override type ObjectType = Component
23

24 spec {
25 (worker, _) =>
26

27 pointcut {
28 !existsAllowRule(worker, ActionSelection.ANY,

ObjectSelection.ANY) &&
29 worker.withAnomalousBehavior
30 }
31

32 insert_rules {
33 deny(worker, ActionSelection.ALL, ObjectSelection.ANY)
34 }
35 }
36 }
37

38 class Pattern2a extends AccessControlAdaptationAspect {
39 override type SubjectType = Worker
40 override type ObjectType = Component
41

42 spec {
43 (worker, _) =>
44

45 pointcut {
46 existsAllowRule(worker, ActionSelection.ANY,

ObjectSelection.ANY) &&
47 worker.withAnomalousBehavior
48 }



49

50 delete_rules {
51 allow(worker, ActionSelection.ANY, ObjectSelection.ANY)
52 }
53 }
54 }
55

56 class Pattern2b extends AccessControlAdaptationAspect {
57 override type SubjectType = Worker
58 override type ObjectType = Component
59

60 spec {
61 (worker, component) =>
62

63 pointcut {
64 existsDenyRule(worker, ActionSelection.ANY,

ObjectSelection.ANY) &&
65 component.hasFailure &&
66 worker.isRepairman &&
67 worker.canRepair(component)
68 }
69

70 delete_rules {
71 deny(worker, ActionSelection.ANY, component)
72 }
73 }
74 }
75

76 class Pattern3 extends AccessControlAdaptationAspect {
77 override type SubjectType = Worker
78 override type ObjectType = Component
79

80 spec {
81 (worker, component) =>
82

83 pointcut {
84 component.getValidator.hasFailure && // e.g. failure of a

card reader
85 worker.isGuard
86 }
87

88 insert_rules {
89 allow(worker, "validateAccess", component)
90 }
91 }
92 }

Listing 2. Aspect-oriented specification

The definition of the aspect-oriented pattern is struc-
tured along two components that act as subject and
object in the access-control rules derived from security
ensembles (i.e., allow or deny rules in Listing 1). The
types of both the subject and the object components
need to be provided to allow for applying the pattern
via type matching at runtime. The situation when the
behavior of the pattern triggers is described within the
pointcut declaration, which is a condition expressed over
the components and their attributes. The behavior is then
either insert_rules or delete_rules (or both) declarations,
which prescribe modification of access control rules of the
matched components.

In particular, if we take Pattern 1a (lines 1–18 in
Listing 2), it is defined over a subject of type Worker and an
object of type Component. Its pointcut defines a situation

that there is a component with failure2 and there exists
some allow access control rule between the component and
a worker that is a foreman for the particular shift. If the
pointcut is evaluated to true for a particular ensemble from
the core specification, insert_rules triggers and allows every
action for the foreman over the broken component. Namely,
if the dispenser of headgear breaks, the foreman will be
allowed to fully control the dispenser and thus open it and
issue headgear to the shift workers.

In the same manner, the other patterns are instantiated
for our example.

C. Detailed semantics
In the previous section we introduced the proposed DSL

and described it informally. In this section, we dive deeper
and detail the semantics of the individual DSL constructs.

Each access control adaptation aspect is specified as a
Scala class that extends the AccessControlAdaptationAspect
class. The latter declares two types that should be in-
stantiated by each specific aspect: the SubjectType and the
ObjectType. Their values are matched against the types of
the subject and object, respectively, of an access control
rule (i.e., an allow/deny rule) of the core specification to
determine whether the aspect is applicable at a certain
point at runtime. For instance, an aspect that defines its
SubjectType to be Worker is only applicable to rules whose
subjects are of type Worker or subtypes of it.

For illustration, consider the rule of the core specification
(Listing 1, line 48):

allow(shift.foreman, Use, shift.workPlace.factoryBuilding.dispenser)

The subject of this rule is shift.foreman, its object is
shift.workPlace.factoryBuilding.dispenser, and its action is Use.
The type of the subject is Worker, while the type of
the object is Dispenser, which is subtype of Component.
As a result, any access control adaptation aspect with
SubjectType equals to Worker and ObjectType equals to
Dispenser or Component is applicable to it. In particular,
all of the five aspects listed in Listing 2 are applicable in
this case.

The second main part of an aspect’s specification is
the spec construct, which is specified via providing an
anonymous function of the form

(parameter1, parameter2) => function_body

Here, the first parameter is of type SubjectType while the
second is of type ObjectType (their names are just variable
names that can be used in the function body). Note that,
following Scala’s syntax, when a parameter is not used in
the function body, the underscore character can be used
in the spec (e.g., line 25 in Listing 2).

The function body expects two constructs: pointcut and
insert_rules or delete_rules . The first is specified via a

2We suppose that components report their failure state via their
attributes—components like Dispenser or Door has internal monitor-
ing function, while for components like Worker, their failure/misbe-
having is detected via external monitoring, e.g., like in [5].



Boolean expression. The pointcut specification can com-
prise both application-specific clauses(e.g., worker.isForeman
or worker.withAnomalousBehaviour) and application-agnostic
ones. In the latter case, the constructs existsAllowRule and
existsDenyRule are used, which check whether an access
control rule of type allow or deny, respectively, of the core
specification is currently active. In using these constructs,
the special wildcards ActionSelection.ANY and ObjectSelec-
tion.ANY can be used to allow matching to any rule and
any object. For illustration, the construct

existsAllowRule(worker, ActionSelection.ANY, component)

will be positively evaluated at a certain point at runtime
when there is an active rule between a subject of the worker’s
type and object of the component’s type, irrespective of the
actual action of the rule.

Finally, the construct insert_rules and delete_rules are
specified via an allow or deny rule. This rule is either to
be inserted or removed to the system once the aspect is
applied at runtime. Here too, the special wildcards Action-
Selection.ALL, ActionSelection.ANY and ObjectSelection.ANY
can be used—the first one in the specification of an
insert_rules construct, while the others in the specification
of a delete_rules one. Their semantics are straightforward:
they allow matching against either all or any action or
object in the set of active rules.

IV. Implementation and evaluation
A. Implementation

As a proof of the concept of the approach presented
in the paper, we created an implementation that applies
the general approach of the access control adaptation
aspects to our use-case of security ensembles in Industry 4.0
settings. Our implementation is based on the TCOOF-
Trust framework3. TCOOF-Trust uses the ensemble-based
access-control specifications defined with our Scala-based
DSL (an example is given in Listing 1) and translates
them to a constraint solving problem that is solved at
runtime by a CSP solver [3]. The answer of the solver is
used to determine the components that are assigned to
each ensemble, as well as their role in each ensemble—this
assignment is in turn used by the framework to assign allow
and deny access control rules to the respective components.
To ensure that all access control rules are up to date, the
framework continuously runs a single centralized instance
of the solver.

Building on our previous work on TCOOF-Trust, we
extended the framework to allow for (i) specializing the
patterns via aspects for a particular application (this
is done by the internal Scala-based DSL exemplified in
Listing 2), and (ii) applying the corresponding aspects
at runtime. The later allows for manipulating the access
control rules derived from the standard ensemble resolution
the framework performs.

3https://github.com/smartarch/tcoof-trust

The aspect-based access rule manipulation works in the
following way. Once an ensemble resolution is performed,
the list of allow and deny rules for the matched components
are piped through an aspect processor. The aspect processor
tries to match (for each aspect for each access control rule)
the type of the aspect’s subject and object to the type or
super-type of the rule’s subject and object. In case of a
match, it evaluates the pointcut of the aspect using the
matched subject and object. If this is satisfied, then the
insert_rules or delete_rules advices are executed. The end
result is that, for each aspect application, a set of specific
allow-deny rules to be added and a set of allow-deny rules
to be removed is generated.

Since potentially many aspects can be active at the
same time and some of them may insert the same rules
that others delete, the result of their application depends
on the order in which they are applied. In the current
implementation, the precedence of aspects is inverse to their
specification, i.e., the aspect specified last takes precedence
in the application of its rules (which is a simple, static
precedence rule).

B. Scalability
To evaluate the proof of the concept, we have applied

the extended TCOOF-Trust framework to a Scala-based
simulation of the Industry 4.0 use case described in
Section II. In the simulation, a number of workers and
foremen move in different rooms in the factory going about
their shifts. Via triggering different (exceptional) situations
such as failures in components that typically act as objects
in the access control rules (e.g., doors, equipment, machines)
we were able to verify that the different aspects were able to
enhance or reduce the permitted actions over the matched
components in each situation. We also observed that, for the
relatively small number of components (less than 50) that
we used in our runs, the performance overhead of applying
the aspects by the framework was negligible. This however
needs to be further investigated with higher number of
components.

The implementation of the aspects on the TCOOF-Trust
framework along with the use case implementation are
available on Github4.

V. Related work
To position our work with related approaches, we focus

in this related work section on the areas of access control
in adaptive systems, aspects in access control, and also
aspects in adaptive systems.

Access control in adaptive systems: The classical access
control systems are DAC [6] and MAC [7] but they can be
used in the simplest cases only. More advanced and still in
use is Role-based access control (RBAC) [8], which employs
groups to gather access rights for similar users. However,
the strict static relationship from groups (with static

4https://github.com/smartarch/tcoof-trust-aspects

https://github.com/smartarch/tcoof-trust
https://github.com/smartarch/tcoof-trust-aspects


members) to rules is not suitable for self-adaptive systems
with dynamic and unanticipated situations. Another used
access control system is Attribute Based Access Control
(ABAC) [9], where access is managed over attributes that
need to be satisfied for accessing data. An ABAC-based ap-
proach is described in [5], which targets dynamic situations
in contemporary systems. Nevertheless only user behavior
representing a potential attack is considered. An approach
in [10] targets access policies creation for dynamically estab-
lished coalitions, nevertheless, the coalitions are considered
only as groups of humans with the same goal and by
themselves are not explicitly described. An adaptive access
control approach in [11] targets context-based systems,
but uses predefined access control policies with predefined
exceptions only. The Organisational Based Access Control
(OrBAC) extends RBAC by separating the implementation
level from the abstract level—an organization here is a
group of entities. Coalition-OrBAC [12] extends OrBAC by
adding another level for controlling access in dynamically
and temporarily created coalitions, however the coalitions
themselves are not explicitly described.

Aspects in access control: Aspect-oriented programming
is currently a well established approach for increasing
modularization of code by allowing clear separation of
concerns (even though opinions can be found claiming that
AOP can reduce readability of code or even negatively
impact modularization of the code—discussions about
trade offs can be found, e.g., in [13]). The most common
concerns modularized via aspects are typically logging and
transaction processing.

Using aspects for managing access control (or infor-
mation security in general) is not a new idea and there
exist approaches employing them. The systematic literature
review in [14] provides an overview of these approaches.
All of the reviewed approaches manage access control in
software only (e.g., allowing method calls) while our ap-
proach primarily deals with physical objects access control.
A more important difference is that these approaches treat
access control as a single concern (that is separated from
an application logic); in our approach we modularize an
access control specification itself and each our aspect is a
particular part of access control.

An approach closer to physical access control is de-
scribed in [15] where aspects are used for controlling
access to patient medical records. Here, an access control
specification can be divided in multiple aspects covering
different concerns. Authors also provide aspect templates
for common specifications—these templates can be seen
as an analogy to our patterns. Nevertheless, similarly to
approaches above and contrary to our approach, aspects
add access control to a code that is originally without any
access control specified.

Aspects in self-adaptive systems: As we treat access
control as a self-adaptive architecture, the domain of self-
adaptive systems in general is also very related.

One of the first works mentioning employment of aspects

in self-adaptive systems is in [16]. Here, advantages of
potential usage of aspects are discussed and the paper also
proposes an updated MAPE-K loop, where each module
is composed of several aspects and these aspects interact
with each other via events.

In [17] a middleware for IoT systems (where self-
adaptation is usually a mandatory property) is envisioned
and it is based on aspect-orient programming principles in
order to dynamically reconfigure offered services.

The survey in [18] provides overview of different engi-
neering approaches for self-adaptive systems. Even though
the survey discusses a huge number of works (it cites more
than 300 works), surprisingly, aspects-oriented approach
is directly employed only in two [19], [20] of them—both
by the same authors and both a little outdated by now.
Here, the approach of aspect-oriented modeling is used, i.e.,
aspects are used to manage models of systems. In particular,
runtime variants of a system are specified as aspect
models that can be applied over the core specification
of a system when needed at runtime. Aspects are applied
as needed—either selected manually, or triggered by a
prescribed runtime event. Examples of the aspects are
particular internationalization of a system, event filters or
permission management. The whole approach is intended
as a replacement of low-level configuration files and move
them the architectural level. From the high-level point of
view, the approach is similar to ours, however it works
on the model-level only and, importantly, it allows only
reasoning about and modifying the structure, not behavior.

The following works employ aspects in the self-
adaptation of system, however primarily only to actually
add self-adaptation to a system originally designed without
it. In [21], a framework for adaptation of BPEL-based
systems is presented. The adaptation is defined and
implemented as plugins specified as aspects. A similar
approach is in [22], where an extension of BPEL is proposed
for monitoring and self-recovery of composite web-services.
The extension is also based on aspects.

Another survey in [23] analyzes self-adaptive and secure
mechanisms in IoT services. Similarly as above, only a
single work that employs aspects has been identified. It is
in [24], where aspects are used to add security to a system
(i.e., security is a treated as a single concern as in works
mentioned above).

From more recent works, the approach used in the
Dragonfly simulator [25] is similar to ours. The simulator
is intended for testing self-adaptive behavior of drones.
The core behavior of a drone is defined directly (states and
transitions between them) while via aspects, an exceptional
behavior is defined. However, the authors do not provide
any patterns or guides to identify this exceptional behavior.

In [26], aspects are used within verification of self-
adaptive systems, but only for collecting runtime infor-
mation about a verified system (i.e., for logging).



VI. Conclusion
In this paper, we have presented an approach for

dynamic adaptation of access-control rules for tackling
uncertainty in access-control in modern CPS systems. We
have demonstrated the application of the approach in the
domain of Industry 4.0. The approach is based on access-
control adaptation aspects that are used to adapt existing
dynamic access-control rules. As such, it is possible to
separate the fully anticipated dynamicity in access-control
from addressing partial uncertainty. Though we present
the approach on the case of our security ensembles, the
approach is general—it assumes only that some means of
adaptive situation-based access-control (not necessarily via
ensembles).

The implementation of the approach is available at
https://github.com/smartarch/tcoof-trust-aspects. While
applied to the domain of Industry 4.0, there do not seem
to be any specificities which should prevent extending it
to other domains of CPS.
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